AWS Deep Learning Containers发布PyTorch 2.4.0 Graviton CPU推理镜像
项目背景
AWS Deep Learning Containers是亚马逊云科技提供的一系列预配置的深度学习容器镜像,这些镜像已经过优化,可直接在AWS云平台上运行。该项目为开发者提供了开箱即用的深度学习环境,大幅降低了部署深度学习应用的复杂度。
最新版本特性
本次发布的v1.24版本主要针对PyTorch推理场景,提供了基于Graviton处理器架构的优化镜像。以下是该版本的核心技术特点:
-
PyTorch 2.4.0支持:镜像内置了PyTorch 2.4.0 CPU版本及其配套工具链,包括torchvision 0.19.0和torchaudio 2.4.0,为开发者提供了最新的PyTorch生态支持。
-
Graviton处理器优化:特别针对AWS Graviton ARM架构处理器进行了优化,能够在基于ARM架构的EC2实例上发挥最佳性能。
-
Python 3.11环境:采用Python 3.11作为默认运行时环境,相比旧版本Python可获得更好的执行效率。
-
Ubuntu 22.04基础:基于Ubuntu 22.04 LTS操作系统构建,提供长期稳定的系统支持。
-
完整工具链集成:预装了TorchServe模型服务框架和Torch Model Archiver工具,方便模型部署和管理。
关键技术组件
该镜像包含了深度学习开发所需的完整工具链:
- 核心计算库:NumPy 1.26.4、SciPy 1.14.1等科学计算基础库
- 图像处理:OpenCV 4.10.0和Pillow 11.0.0图像处理库
- 开发工具:Cython 3.0.11、Ninja 1.11.1等编译工具
- AWS集成:boto3 1.35.54和awscli 1.35.20等AWS服务接口
适用场景
这个优化后的PyTorch推理镜像特别适合以下应用场景:
- 边缘计算部署:在基于Graviton处理器的边缘设备上运行PyTorch模型推理
- 成本敏感型应用:利用ARM架构的成本优势降低推理服务运营成本
- 模型服务化:使用内置的TorchServe快速部署和管理PyTorch模型服务
- 计算机视觉应用:借助预装的OpenCV和Pillow库快速开发视觉相关应用
技术优势
相比通用PyTorch容器,这个专为Graviton优化的版本具有以下优势:
- 性能优化:针对ARM架构进行了指令级优化,能够充分发挥Graviton处理器的计算潜力
- 资源效率:ARM架构通常能提供更好的能效比,降低单位计算成本
- 开箱即用:预配置的环境避免了繁琐的依赖安装和兼容性问题
- 生产就绪:集成了模型服务化工具,可直接用于生产环境部署
总结
AWS Deep Learning Containers项目通过提供预优化的PyTorch 2.4.0 Graviton CPU推理镜像,大大简化了在ARM架构上部署深度学习模型的过程。开发者可以专注于模型开发和业务逻辑,而无需担心底层环境配置问题。这个版本特别适合寻求成本优化和能效提升的AI应用场景。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00