TD3算法实现教程
2024-08-08 23:08:51作者:庞队千Virginia
1. 项目目录结构及介绍
该项目是基于Python的TD3(Twin Delayed Deep Deterministic Policy Gradient)算法实现,其基本目录结构如下:
.
├── LICENSE
├── README.md
├── algorithms
│ ├── ddpg.py
│ └── td3.py
├── envs
│ └── pendulum_v0.py
├── models
│ ├── actor.py
│ ├── critic.py
│ ├── actor_target.py
│ └── critic_target.py
├── results
└── scripts
├── train_td3.sh
└── train_ddpg.sh
LICENSE: 项目许可证文件README.md: 项目说明文档algorithms: 包含DDPG和TD3算法的核心代码envs: 自定义或第三方环境模块,这里以Pendulum-v0为例models: 存放Actor和Critic网络的模型文件以及它们的目标网络results: 存储实验结果的地方scripts: 脚本文件,用于启动训练DDPG和TD3的脚本
2. 项目的启动文件介绍
主要的启动文件位于scripts目录下,有两个脚本:
train_td3.sh: 用于训练TD3算法的bash脚本,执行命令通常是bash train_td3.sh。train_ddpg.sh: 用于训练DDPG算法的bash脚本,执行命令通常是bash train_ddpg.sh。
这些脚本通常会调用algorithms目录下的对应算法文件,并配置相关参数,如学习率、更新频率等。
3. 项目的配置文件介绍
该项目没有单独的配置文件,但大部分配置是在启动脚本和核心算法文件中以变量的形式设定的。例如,在train_td3.sh和train_ddpg.sh中,你可以看到环境名称、随机种子、训练步数等参数的设置。而在algorithms/td3.py或algorithms/ddpg.py中,你会发现更多关于学习率、经验回放缓冲区大小、网络架构等的配置。
如果你想自定义配置,可以修改这些脚本中的变量或者创建一个新的脚本来指定不同的参数。例如,你可以增加一个名为config.py的文件,然后在训练脚本中导入并应用这些配置。
from config import Config
cfg = Config()
在config.py中定义你的配置:
class Config:
ENV_NAME = 'Pendulum-v0'
Seed = 1234
# ...其他配置项...
最后在启动脚本中加载配置:
source config.py
python -m algorithms.td3 --env $ENV_NAME --seed $Seed
这样,你就有一个可定制化的配置结构,可以根据需求灵活调整TD3算法的训练参数。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350