Apache Fury 反序列化时处理部分读取问题的技术解析
2025-06-25 10:37:49作者:柯茵沙
背景介绍
Apache Fury 是一个高性能的序列化框架,在 Java 生态系统中提供了快速的对象序列化和反序列化能力。在实际应用中,我们经常会遇到需要从压缩数据流(如 GZIPInputStream)中连续反序列化多个对象的情况。
问题现象
当开发者尝试从一个 GZIP 压缩文件中连续反序列化多个对象时,可能会遇到 IllegalArgumentException 异常。这种情况通常发生在使用类似以下的代码时:
try (InputStream input = new GZIPInputStream(new FileInputStream("test.dat.gz"))) {
while (input.available() > 0) {
MyClass obj = (MyClass) fury.deserialize(input);
}
}
异常会指出在 Fury 的 readToBufferFromStream 方法中出现了参数校验失败。
问题根源分析
问题的本质在于 Fury 框架对输入流的读取假设过于严格。当前的实现假设输入流能够一次性提供所有需要的数据,这在处理某些类型的输入流(特别是压缩流或网络流)时并不总是成立。具体来说:
- 当前实现首先尝试读取4字节的长度信息
- 然后根据这个长度值读取完整的对象数据
- 如果任一步骤没有读取到预期的字节数,就会抛出异常
这种实现对于能够保证数据完整性的内存缓冲区是可行的,但对于可能分块传输的流式输入则不够健壮。
解决方案
解决这个问题的核心思路是实现一个能够处理部分读取的流读取机制。具体改进包括:
- 实现一个可靠的 readBytes 方法,能够处理分块读取
- 修改 readToBufferFromStream 方法,使用新的读取机制
改进后的 readBytes 方法实现如下:
private static int readBytes(InputStream inputStream, byte[] buffer,
int offset, int size) throws IOException {
int read = 0;
int count = 0;
while (read < size) {
if ((count = inputStream.read(buffer, offset + read, size - read)) == -1) {
break;
}
read += count;
}
return (read == 0 && count == -1) ? -1 : read;
}
这个方法会持续尝试读取,直到读取到所需数量的字节或遇到流结束。然后 readToBufferFromStream 方法可以安全地使用这个改进后的读取机制。
技术意义
这个改进具有以下技术价值:
- 增强了框架的健壮性,能够处理更多类型的输入流
- 保持了原有的性能特性,在理想情况下(数据立即可用)不会有额外开销
- 为处理网络流、压缩流等可能产生数据分块的场景提供了更好的支持
最佳实践
对于开发者来说,在使用 Fury 进行反序列化时,应当注意:
- 对于不确定完整性的输入流,应当使用最新版本的 Fury
- 在反序列化循环中,应当正确处理流结束条件
- 对于性能敏感的场景,可以考虑使用缓冲流来减少部分读取的发生频率
这个改进已经合并到 Fury 的主干代码中,开发者可以放心使用这种模式来处理流式反序列化场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19