MatrixProfile 开源项目教程
2024-09-20 20:19:33作者:羿妍玫Ivan
1. 项目介绍
MatrixProfile 是一个由 Matrix Profile Foundation 开发的 Python 3 库,专门用于挖掘时间序列数据。Matrix Profile 是一种新颖的数据结构,结合了多种算法(如 STOMP、Regimes、Motifs 等),由 UC-Riverside 和 University of New Mexico 的 Keogh 和 Mueen 研究小组开发。该库的目标是通过标准化核心概念、简化 API 和提供合理的默认参数值,使这些算法对新手和专家都易于访问。
MatrixProfile 不仅提供了 Python 实现,还支持其他语言(如 R 和 Golang),这些语言的 API 保持一致,便于用户在不同语言间切换。
2. 项目快速启动
安装
首先,使用 pip 安装 MatrixProfile:
pip install matrixprofile
快速示例
以下是一个简单的示例,展示如何使用 MatrixProfile 进行时间序列分析:
import matrixprofile as mp
# 生成一个简单的时间序列
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# 计算 Matrix Profile
profile = mp.compute(data)
# 输出结果
print(profile['mp'])
详细步骤
- 导入库:首先导入
matrixprofile库。 - 生成数据:创建一个简单的时间序列数据。
- 计算 Matrix Profile:使用
mp.compute函数计算 Matrix Profile。 - 输出结果:打印计算结果。
3. 应用案例和最佳实践
案例1:异常检测
MatrixProfile 可以用于检测时间序列中的异常点。以下是一个简单的异常检测示例:
import matrixprofile as mp
# 生成一个包含异常点的时间序列
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 100, 10]
# 计算 Matrix Profile
profile = mp.compute(data)
# 检测异常点
discords = mp.discover.discords(profile)
# 输出异常点
print(discords)
案例2:模式识别
MatrixProfile 还可以用于识别时间序列中的重复模式(Motifs):
import matrixprofile as mp
# 生成一个包含重复模式的时间序列
data = [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
# 计算 Matrix Profile
profile = mp.compute(data)
# 识别模式
motifs = mp.discover.motifs(profile)
# 输出模式
print(motifs)
4. 典型生态项目
1. tsmp - R 实现
tsmp 是 MatrixProfile 的 R 语言实现,提供了与 Python 版本类似的 API,便于 R 用户进行时间序列分析。
2. go-matrixprofile - Golang 实现
go-matrixprofile 是 MatrixProfile 的 Golang 实现,适用于需要高性能和并发处理的应用场景。
3. STUMPY - Python 高性能实现
STUMPY 是一个高性能的 Python 库,专门用于计算 Matrix Profile,适用于大规模时间序列数据的处理。
通过这些生态项目,用户可以根据自己的需求选择合适的工具,进行高效的时间序列数据挖掘。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
475
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
225
94
暂无简介
Dart
725
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19