MatrixProfile 开源项目教程
2024-09-20 00:04:54作者:羿妍玫Ivan
1. 项目介绍
MatrixProfile 是一个由 Matrix Profile Foundation 开发的 Python 3 库,专门用于挖掘时间序列数据。Matrix Profile 是一种新颖的数据结构,结合了多种算法(如 STOMP、Regimes、Motifs 等),由 UC-Riverside 和 University of New Mexico 的 Keogh 和 Mueen 研究小组开发。该库的目标是通过标准化核心概念、简化 API 和提供合理的默认参数值,使这些算法对新手和专家都易于访问。
MatrixProfile 不仅提供了 Python 实现,还支持其他语言(如 R 和 Golang),这些语言的 API 保持一致,便于用户在不同语言间切换。
2. 项目快速启动
安装
首先,使用 pip 安装 MatrixProfile:
pip install matrixprofile
快速示例
以下是一个简单的示例,展示如何使用 MatrixProfile 进行时间序列分析:
import matrixprofile as mp
# 生成一个简单的时间序列
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# 计算 Matrix Profile
profile = mp.compute(data)
# 输出结果
print(profile['mp'])
详细步骤
- 导入库:首先导入
matrixprofile库。 - 生成数据:创建一个简单的时间序列数据。
- 计算 Matrix Profile:使用
mp.compute函数计算 Matrix Profile。 - 输出结果:打印计算结果。
3. 应用案例和最佳实践
案例1:异常检测
MatrixProfile 可以用于检测时间序列中的异常点。以下是一个简单的异常检测示例:
import matrixprofile as mp
# 生成一个包含异常点的时间序列
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 100, 10]
# 计算 Matrix Profile
profile = mp.compute(data)
# 检测异常点
discords = mp.discover.discords(profile)
# 输出异常点
print(discords)
案例2:模式识别
MatrixProfile 还可以用于识别时间序列中的重复模式(Motifs):
import matrixprofile as mp
# 生成一个包含重复模式的时间序列
data = [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
# 计算 Matrix Profile
profile = mp.compute(data)
# 识别模式
motifs = mp.discover.motifs(profile)
# 输出模式
print(motifs)
4. 典型生态项目
1. tsmp - R 实现
tsmp 是 MatrixProfile 的 R 语言实现,提供了与 Python 版本类似的 API,便于 R 用户进行时间序列分析。
2. go-matrixprofile - Golang 实现
go-matrixprofile 是 MatrixProfile 的 Golang 实现,适用于需要高性能和并发处理的应用场景。
3. STUMPY - Python 高性能实现
STUMPY 是一个高性能的 Python 库,专门用于计算 Matrix Profile,适用于大规模时间序列数据的处理。
通过这些生态项目,用户可以根据自己的需求选择合适的工具,进行高效的时间序列数据挖掘。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217