I18n::Backend::ActiveRecord 技术文档
1. 安装指南
1.1 使用 Bundler 安装
在项目的 Gemfile 中添加以下内容:
gem 'i18n-active_record', require: 'i18n/active_record'
然后运行以下命令更新 Gem 包:
bundle install
1.2 运行安装器
更新 Gem 包后,运行以下命令以安装 i18n-active_record:
rails g i18n:active_record:install
该命令将生成一个迁移文件,用于创建 translations 表。
1.3 自定义表名
如果需要自定义表名,可以使用以下命令:
rails g i18n:active_record:install MyTranslation
1.4 简单安装
如果需要进行简单安装,可以使用以下命令:
rails g i18n:active_record:install --simple
该命令将生成一个简单的初始化文件。
1.5 配置清理方式
可以通过以下配置指定 ActiveRecord 后端在清理时使用 destroy 或 delete:
I18n::Backend::ActiveRecord.configure do |config|
config.cleanup_with_destroy = true # 默认值为 false
end
1.6 配置缓存
如果需要在生产环境中缓存翻译,可以使用以下配置:
I18n::Backend::ActiveRecord.configure do |config|
config.cache_translations = true # 默认值为 false
end
2. 项目的使用说明
2.1 基本使用
安装完成后,可以使用 I18n.t('Your String') 来从数据库中查找翻译。
2.2 自定义翻译模型
默认情况下,该 gem 使用内置的翻译模型。如果需要扩展功能,可以自定义翻译模型:
class MyTranslation < I18n::Backend::ActiveRecord::Translation
def value=(val)
super("custom #{val}")
end
end
I18n::Backend::ActiveRecord.configure do |config|
config.translation_model = MyTranslation
end
2.3 处理缺失翻译
为了使 I18n::Backend::ActiveRecord::Missing 模块正常工作,需要正确配置复数规则。i18n.plural.keys 翻译键应存在于任何后端中。
en:
i18n:
plural:
keys:
- :zero
- :one
- :other
2.4 插值字段
translations 表中的 interpolations 字段用于存储首次请求翻译时的插值。这有助于翻译人员理解需要包含哪些插值。
3. 项目API使用文档
3.1 基本API
I18n.t('Your String'): 从数据库中查找翻译。
3.2 配置API
I18n::Backend::ActiveRecord.configure: 配置 ActiveRecord 后端的选项,如清理方式和缓存。
3.3 自定义模型API
I18n::Backend::ActiveRecord::Translation: 默认的翻译模型,可以继承并扩展。
4. 项目安装方式
4.1 通过 Bundler 安装
在 Gemfile 中添加 gem 'i18n-active_record',然后运行 bundle install。
4.2 运行安装器
使用 rails g i18n:active_record:install 命令生成迁移文件并配置初始化文件。
4.3 自定义安装
可以通过 --simple 选项进行简单安装,或通过指定表名进行自定义安装。
4.4 配置选项
通过 I18n::Backend::ActiveRecord.configure 配置清理方式和缓存选项。
以上是 I18n::Backend::ActiveRecord 项目的技术文档,涵盖了安装指南、使用说明、API 文档以及安装方式。希望这份文档能帮助用户更好地理解和使用该项目。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00