I18n::Backend::ActiveRecord 技术文档
1. 安装指南
1.1 使用 Bundler 安装
在项目的 Gemfile
中添加以下内容:
gem 'i18n-active_record', require: 'i18n/active_record'
然后运行以下命令更新 Gem 包:
bundle install
1.2 运行安装器
更新 Gem 包后,运行以下命令以安装 i18n-active_record
:
rails g i18n:active_record:install
该命令将生成一个迁移文件,用于创建 translations
表。
1.3 自定义表名
如果需要自定义表名,可以使用以下命令:
rails g i18n:active_record:install MyTranslation
1.4 简单安装
如果需要进行简单安装,可以使用以下命令:
rails g i18n:active_record:install --simple
该命令将生成一个简单的初始化文件。
1.5 配置清理方式
可以通过以下配置指定 ActiveRecord 后端在清理时使用 destroy
或 delete
:
I18n::Backend::ActiveRecord.configure do |config|
config.cleanup_with_destroy = true # 默认值为 false
end
1.6 配置缓存
如果需要在生产环境中缓存翻译,可以使用以下配置:
I18n::Backend::ActiveRecord.configure do |config|
config.cache_translations = true # 默认值为 false
end
2. 项目的使用说明
2.1 基本使用
安装完成后,可以使用 I18n.t('Your String')
来从数据库中查找翻译。
2.2 自定义翻译模型
默认情况下,该 gem 使用内置的翻译模型。如果需要扩展功能,可以自定义翻译模型:
class MyTranslation < I18n::Backend::ActiveRecord::Translation
def value=(val)
super("custom #{val}")
end
end
I18n::Backend::ActiveRecord.configure do |config|
config.translation_model = MyTranslation
end
2.3 处理缺失翻译
为了使 I18n::Backend::ActiveRecord::Missing
模块正常工作,需要正确配置复数规则。i18n.plural.keys
翻译键应存在于任何后端中。
en:
i18n:
plural:
keys:
- :zero
- :one
- :other
2.4 插值字段
translations
表中的 interpolations
字段用于存储首次请求翻译时的插值。这有助于翻译人员理解需要包含哪些插值。
3. 项目API使用文档
3.1 基本API
I18n.t('Your String')
: 从数据库中查找翻译。
3.2 配置API
I18n::Backend::ActiveRecord.configure
: 配置 ActiveRecord 后端的选项,如清理方式和缓存。
3.3 自定义模型API
I18n::Backend::ActiveRecord::Translation
: 默认的翻译模型,可以继承并扩展。
4. 项目安装方式
4.1 通过 Bundler 安装
在 Gemfile
中添加 gem 'i18n-active_record'
,然后运行 bundle install
。
4.2 运行安装器
使用 rails g i18n:active_record:install
命令生成迁移文件并配置初始化文件。
4.3 自定义安装
可以通过 --simple
选项进行简单安装,或通过指定表名进行自定义安装。
4.4 配置选项
通过 I18n::Backend::ActiveRecord.configure
配置清理方式和缓存选项。
以上是 I18n::Backend::ActiveRecord
项目的技术文档,涵盖了安装指南、使用说明、API 文档以及安装方式。希望这份文档能帮助用户更好地理解和使用该项目。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









