30秒代码项目中的TF-IDF示例代码优化建议
2025-04-28 03:43:08作者:霍妲思
在自然语言处理(NLP)领域,TF-IDF(词频-逆文档频率)是一种常用的文本特征提取技术。30秒代码项目提供了一个简洁的JavaScript实现,展示了如何构建一个基于TF-IDF的倒排索引系统。然而,在仔细研究示例代码时,我们发现了一个可以优化的地方。
问题发现
在文档解析函数parseDocument的实现中,存在一个冗余的函数调用。原始代码如下:
const parseDocument = document => {
const tokens = removeStopwords(commonStopWords, tokenize(document));
const filteredTokens = removeStopwords(commonStopWords, tokens);
const stemmedTokens = filteredTokens.map(porterStemmer);
return stemmedTokens;
}
这段代码对停用词进行了两次移除操作:第一次在tokenize(document)的结果上,第二次在已经移除过停用词的tokens上。这种重复操作虽然不会导致错误,但确实没有必要,可能会让初学者感到困惑。
优化建议
更合理的实现应该是:
const parseDocument = document => {
const tokens = tokenize(document);
const filteredTokens = removeStopwords(commonStopWords, tokens);
const stemmedTokens = filteredTokens.map(porterStemmer);
return stemmedTokens;
}
技术解析
让我们分解一下文档解析的标准流程:
- 分词(Tokenization): 将原始文本分割成单词或符号的序列
- 停用词移除(Stopword Removal): 过滤掉常见但无实际意义的词(如"the"、"a"等)
- 词干提取(Stemming): 将单词还原为词干形式(如"running"→"run")
在优化后的版本中,每个处理步骤都清晰明确,没有冗余操作。这种简洁的实现更符合代码的最佳实践,也更容易让学习者理解文本预处理的实际流程。
对学习者的启示
这个例子提醒我们,在学习开源项目时:
- 要仔细阅读和理解每一行代码的作用
- 即使是知名项目也可能存在可以改进的地方
- 重复操作往往是代码优化的潜在目标
- 清晰的代码结构有助于教学和理解
对于刚接触NLP的开发者来说,理解文本预处理流程中的每个步骤至关重要。优化后的代码示例更能清晰地展示这一流程,帮助学习者建立正确的概念模型。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
199
219
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
629
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
75
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.74 K