深入理解RAG系统中的重排序技术:基于liu673/rag-all-techniques的实现
2025-07-05 03:22:29作者:幸俭卉
引言
在现代信息检索系统中,检索增强生成(Retrieval-Augmented Generation,RAG)已成为一种强大的技术范式。本文将重点探讨RAG系统中一个关键但常被忽视的组件——重排序(Reranking)技术,并基于liu673/rag-all-techniques项目中的实现进行详细解析。
重排序技术概述
什么是重排序?
重排序是RAG系统中继初始检索后的第二步过滤过程,其主要目的是对初步检索到的文档进行重新排序,确保最终用于生成响应的内容是最相关的。
为什么需要重排序?
- 初始检索的局限性:向量相似性搜索虽然快速,但可能无法准确捕捉语义相关性
- 精度提升:重排序可以显著提高最终结果的准确性
- 计算效率:相比直接使用大模型处理所有检索结果,重排序是一种更经济的方案
核心实现组件
1. 文档处理流程
def process_document(pdf_path, chunk_size=1000, chunk_overlap=200):
# 提取PDF文本
extracted_text = extract_text_from_pdf(pdf_path)
# 分割文本块
chunks = chunk_text(extracted_text, chunk_size, chunk_overlap)
# 创建嵌入向量
chunk_embeddings = create_embeddings(chunks)
# 构建向量存储
store = SimpleVectorStore()
for i, (chunk, embedding) in enumerate(zip(chunks, chunk_embeddings)):
store.add_item(text=chunk, embedding=embedding, metadata={"index": i})
return store
2. 向量存储实现
项目实现了一个轻量级的SimpleVectorStore类,核心功能包括:
- 存储文本、嵌入向量和元数据
- 基于余弦相似度的相似性搜索
- 支持批量添加和检索
class SimpleVectorStore:
def __init__(self):
self.vectors = [] # 存储嵌入向量
self.texts = [] # 存储原始文本
self.metadata = [] # 存储元数据
def similarity_search(self, query_embedding, k=5):
# 计算余弦相似度
similarities = []
for i, vector in enumerate(self.vectors):
similarity = np.dot(query_vector, vector) / \
(np.linalg.norm(query_vector) * np.linalg.norm(vector))
similarities.append((i, similarity))
# 排序并返回top-k结果
similarities.sort(key=lambda x: x[1], reverse=True)
return [{"text": self.texts[idx], ...} for idx, _ in similarities[:k]]
重排序技术实现
1. 基于LLM的重排序
这种方法利用大语言模型对文档相关性进行评分:
def rerank_with_llm(query, results, top_n=3):
# 系统提示定义评分标准
system_prompt = """
您是文档相关性评估专家,擅长判断文档与搜索查询的匹配程度...
评分标准:
0-2分:完全无关
3-5分:含部分相关信息但未直接回答问题
6-8分:相关且能部分解答查询
9-10分:高度相关且直接准确回答问题
"""
# 对每个文档评分
for result in results:
response = client.chat.completions.create(
model=llm_model,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"查询: {query}\n文档: {result['text']}"}
]
)
# 提取评分并存储
score = extract_score(response)
result["relevance_score"] = score
# 按评分排序
return sorted(results, key=lambda x: x["relevance_score"], reverse=True)[:top_n]
优势:
- 能够理解复杂的语义关系
- 评分标准可灵活定义
- 适用于各种类型的查询
局限:
- 计算成本较高
- 延迟相对较大
2. 基于关键词的重排序
这是一种轻量级的替代方案:
def rerank_with_keywords(query, results, top_n=3):
# 提取关键词
keywords = [word.lower() for word in query.split() if len(word) > 3]
# 计算每个文档的分数
for result in results:
score = result["similarity"] * 0.5 # 基础分
# 关键词匹配加分
for keyword in keywords:
if keyword in document_text:
score += 0.1 # 基础匹配分
if first_position < len(text)/4: # 位置加分
score += 0.1
score += min(0.05 * frequency, 0.2) # 频率加分
# 排序并返回
return sorted(results, key=lambda x: x["relevance_score"], reverse=True)[:top_n]
适用场景:
- 对延迟敏感的应用
- 查询包含明确关键词的情况
- 资源受限的环境
完整RAG管道集成
将各组件整合为端到端的RAG管道:
def rag_with_reranking(query, vector_store, reranking_method="llm", top_n=3):
# 1. 创建查询嵌入
query_embedding = create_embeddings(query)
# 2. 初始检索(召回较多结果)
initial_results = vector_store.similarity_search(query_embedding, k=10)
# 3. 应用重排序
if reranking_method == "llm":
reranked_results = rerank_with_llm(query, initial_results, top_n)
else:
reranked_results = rerank_with_keywords(query, initial_results, top_n)
# 4. 合并上下文并生成响应
context = "\n\n===\n\n".join([r["text"] for r in reranked_results])
response = generate_response(query, context)
return {
"query": query,
"context": context,
"response": response
}
性能优化建议
- 批量处理:对多个文档的评分请求可以进行批处理以减少API调用次数
- 缓存机制:对常见查询的结果进行缓存
- 混合策略:结合关键词和LLM评分,先快速筛选再精细排序
- 并行处理:对多个文档的评分可以并行执行
总结
重排序技术是提升RAG系统性能的关键环节。liu673/rag-all-techniques项目提供了两种实用的实现方案:
- 基于LLM的方案:精度高但资源消耗大,适合对质量要求高的场景
- 基于关键词的方案:轻量快速,适合对延迟敏感的应用
开发者可以根据实际需求选择合适的方案,或结合两者优势设计混合策略。理解这些技术细节将帮助您构建更高效、更准确的RAG系统。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26