开源项目教程:Synthetic Computer Vision
2024-08-25 15:27:01作者:何举烈Damon
项目目录结构及介绍
synthetic-computer-vision/
├── data/
│ ├── images/
│ └── annotations/
├── src/
│ ├── models/
│ ├── utils/
│ └── main.py
├── config/
│ └── config.yaml
├── README.md
└── requirements.txt
- data/: 存储项目所需的数据,包括图像和标注文件。
- images/: 存放训练和测试用的图像文件。
- annotations/: 存放图像的标注文件。
- src/: 项目的源代码目录。
- models/: 存放各种模型定义的Python文件。
- utils/: 存放工具函数和辅助代码。
- main.py: 项目的启动文件。
- config/: 存放项目的配置文件。
- config.yaml: 主要的配置文件,包含项目运行所需的参数。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖的Python包列表。
项目的启动文件介绍
项目的启动文件是 src/main.py。这个文件负责初始化项目配置、加载数据、训练模型以及执行预测等任务。以下是 main.py 的主要功能模块:
import config.config as cfg
from src.models import Model
from src.utils import load_data, train_model, evaluate_model
def main():
# 加载配置
config = cfg.load_config()
# 加载数据
data = load_data(config)
# 初始化模型
model = Model(config)
# 训练模型
train_model(model, data)
# 评估模型
evaluate_model(model, data)
if __name__ == "__main__":
main()
项目的配置文件介绍
项目的配置文件是 config/config.yaml。这个文件使用YAML格式,包含了项目运行所需的各种参数,如数据路径、模型参数、训练参数等。以下是 config.yaml 的一个示例:
data_path: "data/images"
annotation_path: "data/annotations"
model_params:
input_size: 224
num_classes: 10
training_params:
batch_size: 32
epochs: 50
learning_rate: 0.001
- data_path: 图像数据的路径。
- annotation_path: 标注文件的路径。
- model_params: 模型参数,包括输入尺寸和类别数。
- training_params: 训练参数,包括批次大小、训练轮数和学习率。
通过修改 config.yaml 文件,可以灵活地调整项目的配置,以适应不同的需求和环境。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248