PVN3D 项目使用指南
2024-09-26 05:34:40作者:余洋婵Anita
1. 项目介绍
PVN3D 是一个用于 6DoF 姿态估计的深度学习项目,由 Yisheng He 等人开发,并在 CVPR 2020 上发表。该项目通过深度点云关键点霍夫投票网络,实现了对 3D 对象的 6DoF 姿态估计。PVN3D 的核心思想是通过检测 3D 关键点,然后使用最小二乘法拟合来估计 6DoF 姿态参数。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
- Python 3.x
- PyTorch 1.0.1 或更高版本
- CUDA 9.0 或更高版本
2.2 安装步骤
-
克隆项目仓库:
git clone https://github.com/ethnhe/PVN3D.git cd PVN3D -
安装依赖:
pip3 install -r requirements.txt sudo apt install python3-tk -
安装 PointNet++:
python3 setup.py build_ext
2.3 数据准备
2.3.1 LineMOD 数据集
- 下载预处理的 LineMOD 数据集:
wget https://path_to_preprocessed_LineMOD_dataset.zip unzip path_to_unzipped_Linemod_preprocessed.zip ln -s path_to_unzipped_Linemod_preprocessed pvn3d/datasets/linemod/Linemod_preprocessed
2.3.2 YCB-Video 数据集
- 下载 YCB-Video 数据集:
wget https://path_to_YCB_Video_Dataset.zip unzip path_to_unzipped_YCB_Video_Dataset.zip ln -s path_to_unzipped_YCB_Video_Dataset pvn3d/datasets/ycb/YCB_Video_Dataset
2.4 训练与评估
2.4.1 训练 LineMOD 数据集
cd pvn3d
python3 -m train train_linemod_pvn3d --cls ape
2.4.2 评估 LineMOD 数据集
cls='ape'
tst_mdl=train_log/linemod/checkpoints/$[cls]/$[cls]_pvn3d_best.pth.tar
python3 -m train train_linemod_pvn3d -checkpoint $tst_mdl -eval_net --test --cls $cls
3. 应用案例和最佳实践
3.1 机器人抓取
PVN3D 在机器人抓取任务中表现出色,特别是在 IROS 2020 的 OCRTOC 挑战赛中获得了第二名。该模型在合成数据上训练,仅使用少量真实数据进行微调,展示了其跨域泛化的能力。
3.2 3D 姿态估计
PVN3D 可以应用于各种需要 3D 姿态估计的场景,如增强现实、虚拟现实和自动驾驶等领域。通过准确估计对象的 6DoF 姿态,可以实现更精确的交互和环境感知。
4. 典型生态项目
4.1 DenseFusion
DenseFusion 是另一个用于 6DoF 姿态估计的项目,与 PVN3D 类似,它也使用了深度学习和点云数据。DenseFusion 通过融合 RGB 图像和点云数据来提高姿态估计的精度。
4.2 FFB6D
FFB6D 是 PVN3D 的后续工作,由同一团队开发,旨在提高 6D 姿态估计的速度和准确性。FFB6D 引入了一个通用的表示学习框架,并使用 PVN3D 的级联预测头进行 6D 姿态估计。
通过这些生态项目,PVN3D 不仅在学术研究中取得了显著成果,也在实际应用中展示了其强大的潜力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355