PVN3D 项目使用教程
2024-09-28 20:09:22作者:舒璇辛Bertina
1. 项目目录结构及介绍
PVN3D 项目的目录结构如下:
PVN3D/
├── pictures/
├── pvn3d/
│ ├── datasets/
│ │ ├── linemod/
│ │ └── ycb/
│ ├── lib/
│ │ ├── utils/
│ │ └── ...
│ ├── train/
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
├── requirements.txt
└── setup.py
目录结构介绍
- pictures/: 存放项目相关的图片文件。
- pvn3d/: 项目的主要代码目录,包含数据集处理、模型训练、评估等模块。
- datasets/: 数据集处理模块,包含 LineMOD 和 YCB-Video 数据集的处理脚本。
- lib/: 包含项目所需的库和工具,如数据处理工具、评估工具等。
- train/: 训练模块,包含训练和评估的脚本。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- requirements.txt: 项目依赖的 Python 包列表。
- setup.py: 项目安装脚本。
2. 项目启动文件介绍
PVN3D 项目的启动文件主要包括训练和评估脚本。以下是主要的启动文件及其功能介绍:
训练脚本
- train/train_linemod_pvn3d.py: 用于在 LineMOD 数据集上训练 PVN3D 模型。
- train/train_ycb_pvn3d.py: 用于在 YCB-Video 数据集上训练 PVN3D 模型。
评估脚本
- train/eval_linemod.sh: 用于在 LineMOD 数据集上评估训练好的模型。
- train/eval_ycb.sh: 用于在 YCB-Video 数据集上评估训练好的模型。
示例命令
训练 LineMOD 数据集
python3 -m train.train_linemod_pvn3d --cls ape
评估 LineMOD 数据集
bash train/eval_linemod.sh
训练 YCB-Video 数据集
python3 -m train.train_ycb_pvn3d
评估 YCB-Video 数据集
bash train/eval_ycb.sh
3. 项目配置文件介绍
PVN3D 项目的配置文件主要包括以下几个部分:
requirements.txt
该文件列出了项目运行所需的 Python 包及其版本。使用以下命令安装依赖:
pip3 install -r requirements.txt
setup.py
该文件用于项目的安装和配置。使用以下命令进行安装:
python3 setup.py install
.gitignore
该文件用于配置 Git 忽略的文件和目录,避免将不必要的文件提交到版本库中。
README.md
该文件包含了项目的详细介绍、安装步骤、使用说明以及相关资源链接。建议在开始使用项目前仔细阅读该文件。
通过以上介绍,您应该对 PVN3D 项目的目录结构、启动文件和配置文件有了基本的了解。根据这些信息,您可以顺利地进行项目的安装、训练和评估。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie034
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX023
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript087
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
34
25
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
836
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
34
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.93 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.63 K
1.45 K
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
58
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
20
2
go-iot-platform
Go IoT 平台,这是一个高效、可扩展的物联网解决方案,使用 Go 语言开发。本平台专注于提供稳定、可靠的 MQTT 客户端管理,以及对 MQTT上报数据的全面处理和分析。
Go
9
4