图像压缩CNN项目使用教程
2024-09-24 11:12:49作者:裴麒琰
1. 项目目录结构及介绍
image-compression-cnn/
├── models/
│ └── model-50
├── output/
├── LICENSE
├── README.md
├── combine_images.py
├── generate_map.py
├── get_metrics.py
├── girl_msroi.png
├── image.png
├── model.py
├── params.py
├── prepare_data.py
├── read_log.py
├── requirements.txt
├── train.py
└── util.py
目录结构介绍
- models/: 存放训练好的模型文件,如
model-50
。 - output/: 生成和保存压缩后的图像文件和映射文件。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- combine_images.py: 用于将图像和映射文件结合生成压缩后的图像。
- generate_map.py: 用于生成图像的映射文件。
- get_metrics.py: 用于计算和获取图像压缩后的指标。
- girl_msroi.png: 示例图像文件。
- image.png: 示例图像文件。
- model.py: 定义CNN模型的文件。
- params.py: 项目的配置参数文件。
- prepare_data.py: 用于准备训练数据。
- read_log.py: 用于读取和分析日志文件。
- requirements.txt: 项目依赖的Python库列表。
- train.py: 用于训练CNN模型的脚本。
- util.py: 项目中使用的工具函数。
2. 项目启动文件介绍
generate_map.py
该脚本用于生成图像的映射文件。使用方法如下:
python generate_map.py <image_file>
生成的映射文件将保存在output
目录下。
combine_images.py
该脚本用于将图像和映射文件结合生成压缩后的图像。使用方法如下:
python combine_images.py -image <image_file> -map <map_file>
默认情况下,映射文件名为output/msroi_map.jpg
。
train.py
该脚本用于训练CNN模型。使用方法如下:
python train.py
训练过程中,模型将每10个epoch保存一次,保存在models
目录下。
3. 项目的配置文件介绍
params.py
该文件包含了项目的配置参数,如训练的超参数、模型路径等。以下是部分配置参数的示例:
# 训练参数
batch_size = 32
learning_rate = 0.001
num_epochs = 100
# 模型路径
model_path = 'models/model-50'
requirements.txt
该文件列出了项目依赖的Python库,使用以下命令安装依赖:
pip install -r requirements.txt
LICENSE
该文件包含了项目的开源许可证信息,通常为MIT许可证。
README.md
该文件包含了项目的介绍、使用说明和相关链接,是项目的入门指南。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-424B-A47B-Paddle
ERNIE-4.5-VL-424B-A47B 是百度推出的多模态MoE大模型,支持文本与视觉理解,总参数量424B,激活参数量47B。基于异构混合专家架构,融合跨模态预训练与高效推理优化,具备强大的图文生成、推理和问答能力。适用于复杂多模态任务场景。00pangu-pro-moe
盘古 Pro MoE (72B-A16B):昇腾原生的分组混合专家模型016kornia
🐍 空间人工智能的几何计算机视觉库Python00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。00
热门内容推荐
1 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 2 freeCodeCamp博客页面工作坊中的断言方法优化建议3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp论坛排行榜项目中的错误日志规范要求5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp英语课程填空题提示缺失问题分析10 freeCodeCamp Cafe Menu项目中link元素的void特性解析
最新内容推荐
node-cache-manager分布式缓存中的缓存雪崩防护机制 rgthree-comfy项目中Bookmark节点导致GUI画布冻结问题分析 EdgeTX固件中EM处理机制的问题分析与解决方案 Paperless-ngx Docker容器启动失败问题分析与解决 Opacus中Ghost Clipping与标准Clipping性能差异分析与修复 Glaze项目中使用std::function包装glz::read_json的方法解析 Apache Kyuubi中Flink引擎会话未关闭问题分析与解决方案 Ash项目中的聚合查询字段位置问题解析 tuya-local项目PG107报警器功能优化与实现解析 Microsoft365DSC项目中Azure订阅配置导出功能解析
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
14

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
295
929

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
489
393

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
356
318

React Native鸿蒙化仓库
C++
111
195

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
367
37

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
579
41

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
982
0

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
689
86

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
51
52