Docker 101 教程:镜像构建最佳实践深度解析
2025-06-20 23:09:02作者:俞予舒Fleming
镜像分层机制解析
Docker 镜像采用分层存储结构,理解这一机制对于优化镜像构建至关重要。通过docker image history命令,我们可以直观地查看组成镜像的各个层级。
查看镜像分层
执行以下命令查看之前构建的docker-101镜像的分层结构:
docker image history docker-101
输出结果示例:
IMAGE CREATED CREATED BY SIZE COMMENT
a78a40cbf866 18秒前 /bin/sh -c #(nop) CMD ["node" "/app/src/ind… 0B
f1d1808565d6 19秒前 /bin/sh -c yarn install --production 85.4MB
a2c054d14948 36秒前 /bin/sh -c #(nop) COPY dir:5dc710ad87c789593… 198kB
...
关键观察点:
- 最底层是基础镜像层,最上层是最近添加的层
- 每行对应Dockerfile中的一个指令
- SIZE列显示了各层所占空间,这对优化镜像体积很有帮助
查看完整命令
添加--no-trunc参数可查看完整的构建命令:
docker image history --no-trunc docker-101
分层缓存优化实践
Docker构建过程中的一个重要特性是:当某一层发生变化时,所有后续层都必须重新构建。这一特性直接影响构建效率。
原始Dockerfile分析
原始构建文件:
FROM node:10-alpine
WORKDIR /app
COPY . .
RUN yarn install --production
CMD ["node", "/app/src/index.js"]
问题所在:
- 每次源代码变更都会导致
COPY . .层变化 - 进而触发
yarn install重新执行 - 但实际上依赖项(package.json)可能并未改变
优化后的Dockerfile
改进方案:
FROM node:10-alpine
WORKDIR /app
COPY package.json yarn.lock ./
RUN yarn install --production
COPY . .
CMD ["node", "/app/src/index.js"]
优化原理:
- 先单独复制包管理文件
- 安装依赖项
- 再复制其余文件
- 这样只有当package.json变化时才会重新安装依赖
构建效果对比
修改HTML文件后重新构建时:
- 前4步直接使用缓存
- 仅执行最后两步的实际复制操作
- 构建时间显著缩短
多阶段构建高级技巧
多阶段构建是Docker的高级特性,它能带来两大核心优势:
- 分离构建时和运行时环境
- 大幅减小最终镜像体积
Java应用构建示例
FROM maven AS build
WORKDIR /app
COPY . .
RUN mvn package
FROM tomcat
COPY --from=build /app/target/file.war /usr/local/tomcat/webapps
技术要点:
- 第一阶段使用Maven完成编译
- 第二阶段只复制编译结果到Tomcat
- 最终镜像不包含JDK和Maven
React应用构建示例
FROM node:10 AS build
WORKDIR /app
COPY package* yarn.lock ./
RUN yarn install
COPY public ./public
COPY src ./src
RUN yarn run build
FROM nginx:alpine
COPY --from=build /app/build /usr/share/nginx/html
技术要点:
- 第一阶段使用Node环境完成前端构建
- 第二阶段使用轻量级nginx服务静态文件
- 最终镜像不包含Node环境
最佳实践总结
-
分层缓存优化:
- 合理安排COPY指令顺序
- 将变化频率低的操作放在前面
- 充分利用构建缓存
-
多阶段构建:
- 分离构建环境和运行环境
- 只将必要文件复制到最终镜像
- 显著减小镜像体积
-
镜像体积控制:
- 定期检查各层大小
- 清理不必要的中间文件
- 选择合适的基础镜像
通过深入理解Docker镜像的分层机制,开发者可以显著提升构建效率,优化镜像质量,为容器化应用带来更好的性能和安全性。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869