PEFT项目中LoRA微调模型加载的最佳实践
2025-05-12 22:59:32作者:余洋婵Anita
背景介绍
在大型语言模型(LLM)微调过程中,参数高效微调(PEFT)技术因其显著降低计算资源需求而广受欢迎。其中,低秩适应(LoRA)是最常用的PEFT方法之一。然而,在实际应用中,开发者经常会遇到一些技术挑战,特别是在多阶段微调过程中。
常见问题分析
许多开发者在尝试对已进行LoRA微调的模型进行第二阶段微调时,会遇到类似"Target module Dropout is not supported"的错误提示。这通常是由于模型加载方式不当导致的,而非真正的Dropout层兼容性问题。
问题根源
通过深入分析发现,这类错误的根本原因在于开发者直接使用get_peft_model函数加载已经过LoRA微调的模型,而非使用专为预训练PEFT模型设计的PeftModel.from_pretrained方法。这种不当的加载方式会导致系统错误地尝试对Dropout层应用LoRA适配,而实际上Dropout层并不包含可训练参数,自然无法支持LoRA适配。
解决方案
正确的多阶段LoRA微调流程应遵循以下步骤:
- 初始微调阶段:使用
get_peft_model创建初始LoRA适配器并进行训练 - 后续微调阶段:使用
PeftModel.from_pretrained加载已训练的模型 - 继续训练选项:
- 直接继续训练现有适配器:设置
is_trainable=True - 添加新适配器:使用
add_adapter方法并指定新的配置
- 直接继续训练现有适配器:设置
技术细节
在LoRA实现中,find_all_linear_names函数用于自动识别模型中的线性层。典型输出如['default', 'base_layer']表明系统正确识别了可应用LoRA的模块。值得注意的是,Dropout层不应出现在目标模块列表中,因为:
- Dropout层没有可训练参数
- LoRA的核心思想是通过低秩分解来近似全参数微调
- Dropout的作用是防止过拟合,与参数适配无关
最佳实践建议
- 始终使用正确的模型加载方法匹配当前任务阶段
- 在Python 3.9或更高版本环境中工作,以获得更好的兼容性
- 明确区分LoRA dropout(作用于LoRA层输入)和普通Dropout层
- 在多阶段微调时,考虑是否需要保留原有适配器或创建新适配器
总结
正确理解和使用PEFT库中的模型加载方法对于成功实现多阶段LoRA微调至关重要。通过遵循本文介绍的最佳实践,开发者可以避免常见的陷阱,更高效地利用LoRA技术进行模型适配。记住,不同训练阶段需要不同的加载策略,这是保证微调过程顺利进行的关键。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218