ARKit 2.0 原型项目教程
2024-08-31 19:57:05作者:丁柯新Fawn
1、项目介绍
ARKit 2.0 原型项目是一个基于苹果的 ARKit 2.0 框架开发的开源项目,旨在展示增强现实(AR)技术的各种应用场景。该项目包括图像识别和跟踪、对象检测、3D 扫描等功能,通过这些功能,开发者可以快速构建和测试自己的 AR 应用。
2、项目快速启动
环境准备
- Xcode 10 或更高版本
- iOS 12 或更高版本的设备
克隆项目
git clone https://github.com/simformsolutions/ARKit2.0-Prototype.git
打开项目
- 在 Xcode 中打开项目文件
ARKit2.0-Prototype.xcodeproj。 - 选择合适的开发者账号和设备进行编译和运行。
示例代码
以下是一个简单的 ARKit 2.0 示例代码,展示如何进行图像识别和跟踪:
import ARKit
import SceneKit
import UIKit
class ViewController: UIViewController, ARSCNViewDelegate {
@IBOutlet var sceneView: ARSCNView!
override func viewDidLoad() {
super.viewDidLoad()
sceneView.delegate = self
let configuration = ARWorldTrackingConfiguration()
configuration.detectionImages = ARReferenceImage.referenceImages(inGroupNamed: "AR Resources", bundle: nil)
sceneView.session.run(configuration)
}
func renderer(_ renderer: SCNSceneRenderer, didAdd node: SCNNode, for anchor: ARAnchor) {
guard let imageAnchor = anchor as? ARImageAnchor else { return }
let referenceImage = imageAnchor.referenceImage
let plane = SCNPlane(width: referenceImage.physicalSize.width, height: referenceImage.physicalSize.height)
let planeNode = SCNNode(geometry: plane)
planeNode.eulerAngles.x = -.pi / 2
node.addChildNode(planeNode)
}
}
3、应用案例和最佳实践
应用案例
- 图像识别与跟踪:通过识别特定的图像,可以在图像上叠加虚拟内容,如在海报上显示动态信息。
- 对象检测:检测现实世界中的物体,并在其上叠加虚拟模型,如在家具上显示3D模型。
- 3D 扫描:通过扫描现实世界的物体,生成其3D模型,用于虚拟展示或进一步的编辑。
最佳实践
- 优化性能:确保 AR 应用在设备上的运行流畅,避免过多的资源消耗。
- 用户体验:设计直观易用的用户界面,确保用户能够轻松地与 AR 内容交互。
- 内容创新:不断探索新的 AR 应用场景,提供新颖有趣的体验。
4、典型生态项目
ARKit 生态项目
- RealityKit:苹果官方的 AR 开发框架,提供高级的 AR 功能和优化。
- SceneKit:用于构建3D内容的框架,与 ARKit 结合使用,可以创建丰富的 AR 体验。
- ARCore:谷歌的 AR 开发平台,与 ARKit 类似,提供跨平台的 AR 解决方案。
通过这些生态项目,开发者可以进一步扩展和增强 ARKit 2.0 原型项目的能力,创造更多可能性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249