BloodHound 开源项目使用教程
1、项目介绍
BloodHound 是一个基于图论的单页 JavaScript Web 应用程序,主要用于揭示 Active Directory 或 Azure 环境中隐藏的、通常是意外的关系。它通过 C# 数据收集器将数据导入到 Neo4j 数据库中,利用图论分析来识别复杂的攻击路径。BloodHound 不仅可以帮助攻击者快速识别攻击路径,还可以帮助防御者识别并消除这些攻击路径。
BloodHound 由 @_wald0、@CptJesus 和 @harmj0y 创建,目前由 BloodHound Enterprise 团队维护。BloodHound Enterprise 是一个攻击路径管理解决方案,能够持续映射和量化 Active Directory 攻击路径。
2、项目快速启动
2.1 安装依赖
首先,确保你已经安装了以下依赖:
- Node.js
- Neo4j
- .NET Core SDK
2.2 克隆项目
git clone https://github.com/adaptivethreat/Bloodhound.git
cd Bloodhound
2.3 安装依赖包
npm install
2.4 启动 Neo4j 数据库
确保 Neo4j 数据库已经启动并运行。你可以使用以下命令启动 Neo4j:
neo4j start
2.5 启动 BloodHound
npm start
2.6 访问 BloodHound
打开浏览器,访问 http://localhost:4000,你将看到 BloodHound 的界面。
3、应用案例和最佳实践
3.1 攻击路径识别
BloodHound 可以帮助攻击者快速识别复杂的攻击路径,例如通过分析用户、组和权限之间的关系,找到从普通用户到域管理员的最短路径。
3.2 防御路径消除
防御者可以使用 BloodHound 来识别并消除潜在的攻击路径。例如,通过分析权限分配,发现并移除不必要的权限,从而减少攻击面。
3.3 安全审计
BloodHound 还可以用于安全审计,帮助组织识别和修复潜在的安全漏洞。通过定期运行 BloodHound,组织可以持续监控其 Active Directory 环境的安全状态。
4、典型生态项目
4.1 Neo4j
Neo4j 是一个高性能的 NoSQL 图形数据库,BloodHound 使用 Neo4j 来存储和查询复杂的权限关系。
4.2 Electron
BloodHound 的前端是基于 Electron 构建的,Electron 允许开发人员使用 Web 技术构建跨平台的桌面应用程序。
4.3 .NET Core
BloodHound 的数据收集器是用 C# 编写的,依赖于 .NET Core SDK 来编译和运行。
通过以上步骤,你可以快速启动并使用 BloodHound 项目,帮助你更好地理解和分析 Active Directory 或 Azure 环境中的权限关系。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00