BloodHound 开源项目教程
1. 项目介绍
BloodHound 是一个用于 Active Directory 和 Azure 环境中的攻击路径管理的开源工具。它通过图形理论揭示隐藏的、通常是意外的关系,帮助攻击者和防御者更好地理解权限关系。BloodHound 使用 C# 数据收集器将数据导入 Neo4j 数据库,并通过一个基于 Electron 的单页 JavaScript Web 应用程序进行可视化展示。
主要功能
- 攻击路径识别:自动识别 Active Directory 和 Azure 环境中的潜在攻击路径。
- 权限可视化:通过图形界面直观展示用户、组、计算机和权限之间的关系。
- 数据收集:支持多种数据收集方式,包括内置的 C# 收集器和 PowerShell 脚本。
2. 项目快速启动
2.1 环境准备
- 操作系统:Windows、Linux 或 macOS
- 数据库:Neo4j(推荐版本 4.x)
- Node.js:推荐使用 Node.js 14.x 或更高版本
2.2 安装步骤
-
克隆项目
git clone https://github.com/SpecterOps/BloodHound.git cd BloodHound
-
安装依赖
npm install
-
启动 Neo4j 数据库 确保 Neo4j 数据库已启动并运行。可以通过以下命令启动 Neo4j:
neo4j start
-
配置 BloodHound 编辑
config.json
文件,配置 Neo4j 数据库连接信息。 -
启动 BloodHound
npm start
2.3 数据收集
使用内置的 C# 收集器或 PowerShell 脚本收集数据,并将数据导入 Neo4j 数据库。
SharpHound.exe --CollectionMethod All
3. 应用案例和最佳实践
3.1 攻击路径分析
通过 BloodHound,安全团队可以快速识别潜在的攻击路径,从而采取相应的防御措施。例如,识别哪些用户可以通过权限提升攻击域管理员。
3.2 权限审计
BloodHound 可以帮助企业进行权限审计,识别不必要的权限和过度授权,从而优化权限配置,减少安全风险。
3.3 事件响应
在安全事件响应过程中,BloodHound 可以帮助快速定位受影响的系统和用户,分析攻击路径,加速事件响应和恢复。
4. 典型生态项目
4.1 Neo4j
BloodHound 依赖 Neo4j 作为后端数据库,存储和查询复杂的权限关系数据。
4.2 SharpHound
SharpHound 是 BloodHound 的 C# 数据收集器,用于从 Active Directory 环境中收集数据。
4.3 BloodHound.py
BloodHound.py 是一个 Python 实现的 BloodHound 数据收集器,适用于 Linux 和 macOS 环境。
通过以上模块的介绍和快速启动指南,您可以快速上手 BloodHound 项目,并利用其强大的功能进行 Active Directory 和 Azure 环境的安全分析和管理。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









