BloodHound 开源项目教程
1. 项目介绍
BloodHound 是一个用于 Active Directory 和 Azure 环境中的攻击路径管理的开源工具。它通过图形理论揭示隐藏的、通常是意外的关系,帮助攻击者和防御者更好地理解权限关系。BloodHound 使用 C# 数据收集器将数据导入 Neo4j 数据库,并通过一个基于 Electron 的单页 JavaScript Web 应用程序进行可视化展示。
主要功能
- 攻击路径识别:自动识别 Active Directory 和 Azure 环境中的潜在攻击路径。
- 权限可视化:通过图形界面直观展示用户、组、计算机和权限之间的关系。
- 数据收集:支持多种数据收集方式,包括内置的 C# 收集器和 PowerShell 脚本。
2. 项目快速启动
2.1 环境准备
- 操作系统:Windows、Linux 或 macOS
- 数据库:Neo4j(推荐版本 4.x)
- Node.js:推荐使用 Node.js 14.x 或更高版本
2.2 安装步骤
-
克隆项目
git clone https://github.com/SpecterOps/BloodHound.git cd BloodHound -
安装依赖
npm install -
启动 Neo4j 数据库 确保 Neo4j 数据库已启动并运行。可以通过以下命令启动 Neo4j:
neo4j start -
配置 BloodHound 编辑
config.json文件,配置 Neo4j 数据库连接信息。 -
启动 BloodHound
npm start
2.3 数据收集
使用内置的 C# 收集器或 PowerShell 脚本收集数据,并将数据导入 Neo4j 数据库。
SharpHound.exe --CollectionMethod All
3. 应用案例和最佳实践
3.1 攻击路径分析
通过 BloodHound,安全团队可以快速识别潜在的攻击路径,从而采取相应的防御措施。例如,识别哪些用户可以通过权限提升攻击域管理员。
3.2 权限审计
BloodHound 可以帮助企业进行权限审计,识别不必要的权限和过度授权,从而优化权限配置,减少安全风险。
3.3 事件响应
在安全事件响应过程中,BloodHound 可以帮助快速定位受影响的系统和用户,分析攻击路径,加速事件响应和恢复。
4. 典型生态项目
4.1 Neo4j
BloodHound 依赖 Neo4j 作为后端数据库,存储和查询复杂的权限关系数据。
4.2 SharpHound
SharpHound 是 BloodHound 的 C# 数据收集器,用于从 Active Directory 环境中收集数据。
4.3 BloodHound.py
BloodHound.py 是一个 Python 实现的 BloodHound 数据收集器,适用于 Linux 和 macOS 环境。
通过以上模块的介绍和快速启动指南,您可以快速上手 BloodHound 项目,并利用其强大的功能进行 Active Directory 和 Azure 环境的安全分析和管理。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00