BloodHound 开源项目教程
1. 项目介绍
BloodHound 是一个用于 Active Directory 和 Azure 环境中的攻击路径管理的开源工具。它通过图形理论揭示隐藏的、通常是意外的关系,帮助攻击者和防御者更好地理解权限关系。BloodHound 使用 C# 数据收集器将数据导入 Neo4j 数据库,并通过一个基于 Electron 的单页 JavaScript Web 应用程序进行可视化展示。
主要功能
- 攻击路径识别:自动识别 Active Directory 和 Azure 环境中的潜在攻击路径。
- 权限可视化:通过图形界面直观展示用户、组、计算机和权限之间的关系。
- 数据收集:支持多种数据收集方式,包括内置的 C# 收集器和 PowerShell 脚本。
2. 项目快速启动
2.1 环境准备
- 操作系统:Windows、Linux 或 macOS
- 数据库:Neo4j(推荐版本 4.x)
- Node.js:推荐使用 Node.js 14.x 或更高版本
2.2 安装步骤
-
克隆项目
git clone https://github.com/SpecterOps/BloodHound.git cd BloodHound -
安装依赖
npm install -
启动 Neo4j 数据库 确保 Neo4j 数据库已启动并运行。可以通过以下命令启动 Neo4j:
neo4j start -
配置 BloodHound 编辑
config.json文件,配置 Neo4j 数据库连接信息。 -
启动 BloodHound
npm start
2.3 数据收集
使用内置的 C# 收集器或 PowerShell 脚本收集数据,并将数据导入 Neo4j 数据库。
SharpHound.exe --CollectionMethod All
3. 应用案例和最佳实践
3.1 攻击路径分析
通过 BloodHound,安全团队可以快速识别潜在的攻击路径,从而采取相应的防御措施。例如,识别哪些用户可以通过权限提升攻击域管理员。
3.2 权限审计
BloodHound 可以帮助企业进行权限审计,识别不必要的权限和过度授权,从而优化权限配置,减少安全风险。
3.3 事件响应
在安全事件响应过程中,BloodHound 可以帮助快速定位受影响的系统和用户,分析攻击路径,加速事件响应和恢复。
4. 典型生态项目
4.1 Neo4j
BloodHound 依赖 Neo4j 作为后端数据库,存储和查询复杂的权限关系数据。
4.2 SharpHound
SharpHound 是 BloodHound 的 C# 数据收集器,用于从 Active Directory 环境中收集数据。
4.3 BloodHound.py
BloodHound.py 是一个 Python 实现的 BloodHound 数据收集器,适用于 Linux 和 macOS 环境。
通过以上模块的介绍和快速启动指南,您可以快速上手 BloodHound 项目,并利用其强大的功能进行 Active Directory 和 Azure 环境的安全分析和管理。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00