AFL++项目中针对Android .so文件的无符号表模糊测试方案
2025-06-06 05:23:21作者:傅爽业Veleda
在移动安全研究领域,针对Android原生库(.so文件)的模糊测试是一项重要工作。本文将详细介绍如何利用AFL++的Frida模式对已去除符号表的.so文件进行高效模糊测试。
背景与挑战
Android应用的Native代码通常以动态链接库(.so文件)形式存在,出于安全考虑,这些文件经常会被去除符号表(stripped)。这使得传统的模糊测试方法面临两个主要挑战:
- 无法直接通过函数名定位目标函数
- 难以编写有效的测试驱动(harness)
技术方案
方案一:基于地址偏移的Frida注入
对于选择使用Frida模式的开发者,可以通过以下步骤实现对无符号表函数的定位:
- 使用反汇编工具确定目标函数在二进制中的偏移量
- 通过Frida API获取模块基地址
- 计算目标函数的绝对地址
关键代码示例:
let base = Module.findBaseAddress("libtarget.so");
let targetFunc = base.add(0x1234); // 0x1234为函数偏移
方案二:原生测试驱动开发
更高效的方案是开发原生C/C++测试驱动:
- 通过dlopen动态加载目标库
- 利用已知导出函数作为定位基准
- 根据反汇编确定的偏移量计算目标函数地址
示例代码框架:
void* handle = dlopen("libtarget.so", RTLD_LAZY);
uintptr_t known_func = (uintptr_t)dlsym(handle, "exported_func");
uintptr_t target_func = known_func + OFFSET; // OFFSET需预先确定
方案三:构建时链接方案
对于可获取完整.so文件的情况,推荐使用构建系统直接链接:
- 在CMake中定位目标库
- 声明外部函数原型
- 直接链接到测试程序
CMake配置示例:
find_library(TARGET_LIB NAMES target)
add_executable(fuzzer harness.cpp)
target_link_libraries(fuzzer ${TARGET_LIB})
技术要点
-
偏移量计算:需要借助反汇编工具精确定位目标函数相对于导出函数或文件头的偏移。
-
函数原型重建:通过逆向分析确定目标函数的参数类型和调用约定,这对编写有效harness至关重要。
-
异常处理:无符号表函数的调用更容易引发崩溃,需要完善的信号处理和状态恢复机制。
-
性能优化:原生测试驱动相比Frida模式通常能获得更好的模糊测试吞吐量。
最佳实践建议
- 优先考虑方案三的直接链接方式,可获得最佳性能
- 对于黑盒测试场景,方案一的Frida模式更具灵活性
- 使用LIEF等二进制修改工具可以临时恢复关键符号
- 结合AFL++的QEMU模式可以在x86平台获得接近原生的测试速度
通过以上方案,安全研究人员可以有效解决无符号表Android原生库的模糊测试难题,为移动应用安全评估提供有力工具支持。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493