首页
/ Driller:智能模糊测试的利器

Driller:智能模糊测试的利器

2024-09-19 11:30:13作者:齐冠琰

项目介绍

Driller 是一个基于 driller paper 的开源实现,旨在通过结合模糊测试(Fuzzing)和符号执行(Symbolic Execution)技术,提升漏洞发现的效率。Driller 构建在 AFL(American Fuzzy Lop)之上,并使用 angr 作为符号追踪工具。当 AFL 在模糊测试过程中遇到瓶颈,无法继续发现新的路径时,Driller 会介入,通过符号执行生成新的输入,帮助 AFL 继续探索程序的执行路径。

项目技术分析

Driller 的核心技术在于其智能的“stuck”启发式算法。当 AFL 的 pending_favs 属性(即 AFL 认为有潜力的未探索路径数量)降至 0 时,Driller 会被自动调用。此时,Driller 会接管 AFL 的输入队列,利用 angr 对这些输入进行符号执行,寻找 AFL 未能覆盖的基本块转换。一旦找到新的输入,Driller 会将其反馈给 AFL,AFL 则继续进行常规的变异和路径探索。

Driller 的实现支持三种操作模式:

  1. 单机模式:通过脚本在单台机器上同时运行 AFL 和 Driller,支持多核并行处理。
  2. 监控模式:通过监控 fuzzer_stats 文件,自动判断何时调用 Driller。
  3. 分布式模式:利用 Celery 和 Redis 在多台机器上分配任务,实现分布式模糊测试和符号执行。

项目及技术应用场景

Driller 在实际应用中表现出色,特别是在 DARPA 的 Cyber Grand Challenge(CGC)中,团队 Shellphish 使用 Driller 成功发现了多个可利用的漏洞。Driller 特别适用于以下场景:

  • 复杂软件的漏洞挖掘:对于复杂的二进制程序,Driller 能够帮助模糊测试工具突破瓶颈,发现更多潜在的漏洞。
  • 自动化安全测试:在自动化安全测试流水线中,Driller 可以作为关键组件,提升测试的覆盖率和漏洞发现率。
  • 研究与开发:对于安全研究人员和开发者来说,Driller 提供了一个强大的工具,帮助他们理解和分析程序的执行路径,从而更好地进行漏洞挖掘和修复。

项目特点

  • 智能启发式算法:Driller 通过智能的“stuck”启发式算法,自动判断何时介入模糊测试过程,提升测试效率。
  • 结合模糊测试与符号执行:Driller 巧妙地将模糊测试和符号执行结合,充分利用两者的优势,提升漏洞发现的效率。
  • 支持多种操作模式:无论是单机模式、监控模式还是分布式模式,Driller 都能灵活应对不同的应用场景。
  • 广泛的应用支持:Driller 不仅支持 DECREE 二进制格式,还具备一定的通用性,适用于多种二进制程序的漏洞挖掘。

结语

Driller 是一个功能强大且灵活的开源工具,适用于各种安全测试和漏洞挖掘场景。无论你是安全研究人员、开发者,还是自动化测试工程师,Driller 都能为你提供有力的支持,帮助你更高效地发现和修复软件中的漏洞。赶快尝试 Driller,开启你的智能模糊测试之旅吧!

登录后查看全文
热门项目推荐
相关项目推荐