Driller:智能模糊测试的利器
2024-09-19 03:43:44作者:齐冠琰
项目介绍
Driller 是一个基于 driller paper 的开源实现,旨在通过结合模糊测试(Fuzzing)和符号执行(Symbolic Execution)技术,提升漏洞发现的效率。Driller 构建在 AFL(American Fuzzy Lop)之上,并使用 angr 作为符号追踪工具。当 AFL 在模糊测试过程中遇到瓶颈,无法继续发现新的路径时,Driller 会介入,通过符号执行生成新的输入,帮助 AFL 继续探索程序的执行路径。
项目技术分析
Driller 的核心技术在于其智能的“stuck”启发式算法。当 AFL 的 pending_favs 属性(即 AFL 认为有潜力的未探索路径数量)降至 0 时,Driller 会被自动调用。此时,Driller 会接管 AFL 的输入队列,利用 angr 对这些输入进行符号执行,寻找 AFL 未能覆盖的基本块转换。一旦找到新的输入,Driller 会将其反馈给 AFL,AFL 则继续进行常规的变异和路径探索。
Driller 的实现支持三种操作模式:
- 单机模式:通过脚本在单台机器上同时运行 AFL 和 Driller,支持多核并行处理。
- 监控模式:通过监控
fuzzer_stats文件,自动判断何时调用 Driller。 - 分布式模式:利用 Celery 和 Redis 在多台机器上分配任务,实现分布式模糊测试和符号执行。
项目及技术应用场景
Driller 在实际应用中表现出色,特别是在 DARPA 的 Cyber Grand Challenge(CGC)中,团队 Shellphish 使用 Driller 成功发现了多个可利用的漏洞。Driller 特别适用于以下场景:
- 复杂软件的漏洞挖掘:对于复杂的二进制程序,Driller 能够帮助模糊测试工具突破瓶颈,发现更多潜在的漏洞。
- 自动化安全测试:在自动化安全测试流水线中,Driller 可以作为关键组件,提升测试的覆盖率和漏洞发现率。
- 研究与开发:对于安全研究人员和开发者来说,Driller 提供了一个强大的工具,帮助他们理解和分析程序的执行路径,从而更好地进行漏洞挖掘和修复。
项目特点
- 智能启发式算法:Driller 通过智能的“stuck”启发式算法,自动判断何时介入模糊测试过程,提升测试效率。
- 结合模糊测试与符号执行:Driller 巧妙地将模糊测试和符号执行结合,充分利用两者的优势,提升漏洞发现的效率。
- 支持多种操作模式:无论是单机模式、监控模式还是分布式模式,Driller 都能灵活应对不同的应用场景。
- 广泛的应用支持:Driller 不仅支持 DECREE 二进制格式,还具备一定的通用性,适用于多种二进制程序的漏洞挖掘。
结语
Driller 是一个功能强大且灵活的开源工具,适用于各种安全测试和漏洞挖掘场景。无论你是安全研究人员、开发者,还是自动化测试工程师,Driller 都能为你提供有力的支持,帮助你更高效地发现和修复软件中的漏洞。赶快尝试 Driller,开启你的智能模糊测试之旅吧!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248