Awesome-Knowledge-Distillation项目新增CVPR 2024论文解析:Logit标准化在知识蒸馏中的应用
知识蒸馏作为深度学习模型压缩领域的重要技术,近年来持续受到学术界和工业界的广泛关注。在Awesome-Knowledge-Distillation这个收集知识蒸馏相关优质资源的开源项目中,最新收录了一篇来自CVPR 2024的Highlight论文,该论文提出了一种创新的Logit标准化方法,为知识蒸馏技术带来了新的改进思路。
这篇题为"Logit Standardization in Knowledge Distillation"的论文探讨了一个关键问题:在传统的知识蒸馏过程中,温度参数通常被统一应用于教师模型和学生模型,且对所有样本采用相同的温度值。这种处理方式可能忽视了不同模型和不同样本之间的差异性,从而限制了知识蒸馏的效果。
论文的核心贡献在于提出了加权Z-score Logit标准化方法,这是一种即插即用的预处理技术。该方法能够根据教师模型和学生模型的不同特性,为它们分配不同的温度参数,同时还能动态调整不同样本的温度值。这种细粒度的温度调节机制,使得知识蒸馏过程能够更有效地捕捉和转移教师模型中的知识。
技术实现上,该方法首先对Logit输出进行标准化处理,消除不同类别间Logit值的尺度差异。然后通过引入加权机制,使得重要样本或类别在蒸馏过程中获得更多关注。这种处理不仅提升了蒸馏效率,还能与现有的基于Logit的知识蒸馏方法无缝结合,展现出良好的兼容性和扩展性。
实验结果表明,该方法在多个基准数据集和模型架构上都取得了显著的效果提升。特别是在处理类别不平衡数据时,由于标准化过程能够平衡各类别的影响,使得学生模型的性能得到明显改善。这一特性使得该方法在实际应用中具有重要价值,因为现实场景中的数据往往存在不同程度的类别不平衡问题。
这项工作的意义不仅在于提出了一种有效的改进方法,更重要的是它为知识蒸馏中的温度调节机制提供了新的研究视角。通过揭示温度参数在教师模型和学生模型之间、不同样本之间的差异性影响,为后续研究开辟了新的方向。
Awesome-Knowledge-Distillation项目收录这篇论文,进一步丰富了项目中关于知识蒸馏前沿技术的资源,为研究者和实践者提供了宝贵的参考资料。该项目的持续更新维护,使其成为知识蒸馏领域最具权威性的资源集合之一。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00