Awesome-Knowledge-Distillation项目新增CVPR 2024论文解析:Logit标准化在知识蒸馏中的应用
知识蒸馏作为深度学习模型压缩领域的重要技术,近年来持续受到学术界和工业界的广泛关注。在Awesome-Knowledge-Distillation这个收集知识蒸馏相关优质资源的开源项目中,最新收录了一篇来自CVPR 2024的Highlight论文,该论文提出了一种创新的Logit标准化方法,为知识蒸馏技术带来了新的改进思路。
这篇题为"Logit Standardization in Knowledge Distillation"的论文探讨了一个关键问题:在传统的知识蒸馏过程中,温度参数通常被统一应用于教师模型和学生模型,且对所有样本采用相同的温度值。这种处理方式可能忽视了不同模型和不同样本之间的差异性,从而限制了知识蒸馏的效果。
论文的核心贡献在于提出了加权Z-score Logit标准化方法,这是一种即插即用的预处理技术。该方法能够根据教师模型和学生模型的不同特性,为它们分配不同的温度参数,同时还能动态调整不同样本的温度值。这种细粒度的温度调节机制,使得知识蒸馏过程能够更有效地捕捉和转移教师模型中的知识。
技术实现上,该方法首先对Logit输出进行标准化处理,消除不同类别间Logit值的尺度差异。然后通过引入加权机制,使得重要样本或类别在蒸馏过程中获得更多关注。这种处理不仅提升了蒸馏效率,还能与现有的基于Logit的知识蒸馏方法无缝结合,展现出良好的兼容性和扩展性。
实验结果表明,该方法在多个基准数据集和模型架构上都取得了显著的效果提升。特别是在处理类别不平衡数据时,由于标准化过程能够平衡各类别的影响,使得学生模型的性能得到明显改善。这一特性使得该方法在实际应用中具有重要价值,因为现实场景中的数据往往存在不同程度的类别不平衡问题。
这项工作的意义不仅在于提出了一种有效的改进方法,更重要的是它为知识蒸馏中的温度调节机制提供了新的研究视角。通过揭示温度参数在教师模型和学生模型之间、不同样本之间的差异性影响,为后续研究开辟了新的方向。
Awesome-Knowledge-Distillation项目收录这篇论文,进一步丰富了项目中关于知识蒸馏前沿技术的资源,为研究者和实践者提供了宝贵的参考资料。该项目的持续更新维护,使其成为知识蒸馏领域最具权威性的资源集合之一。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00