Flash-Attention项目在Jetson AGX Orin上的编译适配指南
问题背景
在使用Flash-Attention项目时,部分用户在Jetson AGX Orin开发板上遇到了CUDA内核执行错误:"no kernel image is available for execution on the device"。这个问题源于NVIDIA不同GPU架构之间的兼容性问题,特别是当项目默认配置针对特定架构(如sm80)编译时,在其他架构设备上运行时就会出现兼容性问题。
技术原理分析
NVIDIA GPU采用不同的架构设计,每个架构都有对应的计算能力版本号(Compute Capability)。Jetson AGX Orin搭载的GPU基于Ampere架构,计算能力版本为8.7(sm87),而Flash-Attention项目默认配置是针对计算能力8.0(sm80)的A100 GPU进行优化的。
CUDA编译器(nvcc)在编译时需要通过-gencode选项指定目标架构。当代码中明确指定了arch=compute_80,code=sm_80时,生成的二进制将只包含针对sm80架构的代码,无法在sm87设备上运行。
解决方案
要解决这个问题,需要修改Flash-Attention项目的编译配置,使其包含对sm87架构的支持。具体步骤如下:
-
修改setup.py文件: 在setup.py中找到CUDA架构配置部分,添加对sm87架构的支持。建议的修改方式是增加条件判断,当检测到目标设备支持sm87时,添加对应的编译选项。
-
设置环境变量: 通过设置
FLASH_ATTN_CUDA_ARCHS环境变量为"87",明确指定目标架构。 -
重新编译安装: 执行
python setup.py install命令重新编译安装项目。
详细实施步骤
- 打开Flash-Attention项目中的setup.py文件
- 在CUDA架构配置部分添加以下代码:
if "87" in cuda_archs(): cc_flag.append("-gencode") cc_flag.append("arch=compute_87,code=sm_87") - 在终端中设置环境变量:
export FLASH_ATTN_CUDA_ARCHS=87 - 执行重新编译安装:
python setup.py install
注意事项
- 确保你的CUDA工具链版本与Jetson AGX Orin的驱动版本兼容
- 如果同时需要支持多种架构,可以在环境变量中指定多个架构版本,如"80;87"
- 修改后建议清理之前的编译缓存,以确保新配置生效
扩展知识
对于需要在多种NVIDIA GPU设备上部署的应用,建议在编译时包含多个架构的代码。CUDA的fatbin格式支持在一个二进制中包含多个架构的代码,运行时自动选择适合当前设备的版本。这可以通过在编译选项中指定多个-gencode参数实现,例如:
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
cc_flag.append("-gencode")
cc_flag.append("arch=compute_87,code=sm_87")
这种配置方式可以确保编译出的二进制文件在多种设备上都能正常运行,但会增加二进制文件的大小。开发者需要根据实际部署场景权衡兼容性和性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00