Kubernetes Autoscaler 项目教程
1. 项目介绍
Kubernetes Autoscaler 是一个用于自动调整 Kubernetes 集群大小的组件。它确保集群中的所有 Pod 都有足够的资源运行,并且在不需要时删除不必要的节点,从而优化资源使用和成本。Kubernetes Autoscaler 包括以下几个主要组件:
- Cluster Autoscaler: 自动调整 Kubernetes 集群的大小,确保所有 Pod 都有足够的资源运行,并在不需要时删除不必要的节点。
- Vertical Pod Autoscaler: 自动调整 Pod 的 CPU 和内存请求,以优化资源使用。
- Addon Resizer: 一个简化的垂直 Pod 自动扩展器,根据集群中的节点数量调整部署的资源请求。
2. 项目快速启动
2.1 安装 Cluster Autoscaler
首先,确保你已经有一个 Kubernetes 集群,并且具备管理员权限。以下是安装 Cluster Autoscaler 的步骤:
-
克隆项目仓库:
git clone https://github.com/kubernetes/autoscaler.git cd autoscaler/cluster-autoscaler -
部署 Cluster Autoscaler:
kubectl apply -f examples/cluster-autoscaler-standard.yaml -
验证部署:
kubectl get pods -n kube-system | grep cluster-autoscaler
2.2 安装 Vertical Pod Autoscaler
-
克隆项目仓库:
git clone https://github.com/kubernetes/autoscaler.git cd autoscaler/vertical-pod-autoscaler -
部署 Vertical Pod Autoscaler:
./hack/vpa-up.sh -
验证部署:
kubectl get pods -n kube-system | grep vpa
3. 应用案例和最佳实践
3.1 自动扩展集群
在生产环境中,集群的负载可能会随着时间变化。使用 Cluster Autoscaler 可以根据负载自动扩展或缩减集群中的节点数量,确保资源的高效利用。
3.2 优化 Pod 资源请求
通过使用 Vertical Pod Autoscaler,可以自动调整 Pod 的资源请求,确保每个 Pod 都能获得足够的资源,同时避免资源浪费。
3.3 结合 HPA 和 VPA
在某些情况下,可以结合 Horizontal Pod Autoscaler (HPA) 和 Vertical Pod Autoscaler (VPA) 来实现更精细的资源管理。HPA 可以根据 CPU 或内存使用率自动扩展 Pod 的数量,而 VPA 则可以调整每个 Pod 的资源请求。
4. 典型生态项目
4.1 Kubernetes Metrics Server
Kubernetes Metrics Server 是一个集群范围的资源使用数据聚合器,为 HPA 和 VPA 提供必要的指标数据。
4.2 Prometheus
Prometheus 是一个开源的监控和警报工具,可以与 Kubernetes Autoscaler 结合使用,提供更详细的监控和警报功能。
4.3 Helm
Helm 是 Kubernetes 的包管理器,可以简化 Kubernetes Autoscaler 及其相关组件的部署和管理。
通过以上步骤和案例,你可以快速上手并有效使用 Kubernetes Autoscaler 来优化你的 Kubernetes 集群资源管理。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00