Kubernetes Autoscaler 项目教程
2024-09-14 16:01:36作者:平淮齐Percy
1. 项目目录结构及介绍
Kubernetes Autoscaler 项目的目录结构如下:
kubernetes/autoscaler/
├── addon-resizer/
├── balancer/
├── builder/
├── charts/
├── cluster-autoscaler/
├── hack/
├── multidimensional-pod-autoscaler/
├── vertical-pod-autoscaler/
├── .gitignore
├── pre-commit-config.yaml
├── CONTRIBUTING.md
├── LICENSE
├── OWNERS
├── README.md
├── SECURITY_CONTACTS
└── code-of-conduct.md
目录结构介绍
- addon-resizer/: 包含 Addon Resizer 组件的代码,用于根据集群节点数量调整部署的资源请求。
- balancer/: 包含负载均衡相关的代码。
- builder/: 包含构建工具和脚本的代码。
- charts/: 包含 Helm charts,用于部署 Kubernetes Autoscaler 组件。
- cluster-autoscaler/: 包含 Cluster Autoscaler 组件的代码,用于自动调整 Kubernetes 集群的大小。
- hack/: 包含开发和测试相关的脚本。
- multidimensional-pod-autoscaler/: 包含多维度 Pod 自动伸缩组件的代码。
- vertical-pod-autoscaler/: 包含 Vertical Pod Autoscaler 组件的代码,用于自动调整 Pod 的 CPU 和内存请求。
- .gitignore: Git 忽略文件配置。
- pre-commit-config.yaml: 预提交钩子配置文件。
- CONTRIBUTING.md: 贡献指南。
- LICENSE: 项目许可证。
- OWNERS: 项目维护者列表。
- README.md: 项目介绍和使用说明。
- SECURITY_CONTACTS: 安全联系人信息。
- code-of-conduct.md: 行为准则。
2. 项目启动文件介绍
Kubernetes Autoscaler 项目的启动文件主要位于 cluster-autoscaler/ 目录下。以下是一些关键的启动文件:
- cluster-autoscaler/main.go: 这是 Cluster Autoscaler 的主入口文件,负责启动和初始化 Cluster Autoscaler 组件。
- vertical-pod-autoscaler/main.go: 这是 Vertical Pod Autoscaler 的主入口文件,负责启动和初始化 Vertical Pod Autoscaler 组件。
- addon-resizer/main.go: 这是 Addon Resizer 的主入口文件,负责启动和初始化 Addon Resizer 组件。
启动文件介绍
- main.go: 这些文件是各个组件的启动入口,包含了初始化逻辑、配置加载、依赖注入等。通过这些文件,可以启动相应的自动伸缩组件。
3. 项目配置文件介绍
Kubernetes Autoscaler 项目的配置文件主要位于各个组件的 config/ 目录下。以下是一些关键的配置文件:
- cluster-autoscaler/config/config.yaml: Cluster Autoscaler 的配置文件,包含集群自动伸缩的参数配置。
- vertical-pod-autoscaler/config/config.yaml: Vertical Pod Autoscaler 的配置文件,包含 Pod 资源自动调整的参数配置。
- addon-resizer/config/config.yaml: Addon Resizer 的配置文件,包含部署资源自动调整的参数配置。
配置文件介绍
- config.yaml: 这些配置文件包含了各个组件的运行参数,如自动伸缩的策略、资源请求的调整规则等。通过修改这些配置文件,可以定制化各个组件的行为。
总结
Kubernetes Autoscaler 项目是一个用于自动调整 Kubernetes 集群和 Pod 资源的工具集。通过了解项目的目录结构、启动文件和配置文件,可以更好地理解和使用这些自动伸缩组件。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895