MGSSL 项目使用教程
2024-09-13 00:15:15作者:翟江哲Frasier
1. 项目介绍
MGSSL(Motif-based Graph Self-Supervised Learning)是一个基于图神经网络(GNN)的自监督学习框架,专门用于分子属性预测。该项目在 NeurIPS'21 会议上发表,旨在通过引入一种新颖的自监督图生成框架来提升 GNN 在分子属性预测任务中的表现。MGSSL 通过提取分子图中的子图(motif)并进行自监督预训练,从而在下游任务中实现更好的性能。
2. 项目快速启动
2.1 环境准备
首先,确保你的环境中安装了以下依赖:
- PyTorch 1.8.1
- torch-geometric 1.7.0
- rdkit 2020.09.1
- tqdm 4.31.1
- tensorboardx 1.6
你可以通过以下命令安装这些依赖:
pip install torch==1.8.1 torch-geometric==1.7.0 rdkit==2020.09.1 tqdm==4.31.1 tensorboardx==1.6
2.2 克隆项目
使用以下命令克隆 MGSSL 项目到本地:
git clone https://github.com/zaixizhang/MGSSL.git
cd MGSSL
2.3 预训练模型
进入 motif_based_pretrain 目录,运行以下命令进行模型预训练:
cd motif_based_pretrain
python pretrain_motif.py
2.4 模型评估
预训练完成后,进入 finetune 目录,运行以下命令进行模型评估:
cd ../finetune
python finetune.py
3. 应用案例和最佳实践
3.1 分子属性预测
MGSSL 主要应用于分子属性预测任务。通过预训练模型,可以有效地捕捉分子图中的子图信息,从而在下游任务中实现更高的准确性。例如,在药物发现领域,MGSSL 可以用于预测分子的毒性、溶解度等属性。
3.2 最佳实践
- 数据准备:确保数据集符合项目要求,特别是分子图的格式。
- 超参数调优:根据具体任务调整预训练和微调的超参数,以获得最佳性能。
- 模型保存与加载:在训练过程中保存最佳模型,并在评估时加载该模型。
4. 典型生态项目
4.1 PyTorch Geometric
PyTorch Geometric 是一个基于 PyTorch 的几何深度学习扩展库,提供了丰富的图神经网络模型和工具。MGSSL 依赖于 PyTorch Geometric 进行图数据的处理和模型构建。
4.2 RDKit
RDKit 是一个开源的化学信息学库,用于处理化学分子数据。MGSSL 使用 RDKit 进行分子图的生成和处理。
4.3 TensorBoardX
TensorBoardX 是一个用于记录和可视化训练过程的工具,MGSSL 使用它来监控模型的训练进度和性能。
通过以上模块的介绍和实践,你可以快速上手并应用 MGSSL 项目进行分子属性预测任务。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
655
149
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
642
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
仓颉编译器源码及 cjdb 调试工具。
C++
130
864
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言运行时与标准库。
Cangjie
138
874