PyTorch Recsys中EmbeddingBagCollection均值池化的分布式计算问题分析
2025-07-04 06:58:15作者:霍妲思
背景介绍
在推荐系统领域,Embedding技术被广泛应用于处理稀疏特征。PyTorch Recsys(torchrec)作为PyTorch生态中的推荐系统专用库,提供了EmbeddingBagCollection等高效组件来处理大规模稀疏特征。其中,均值池化(Mean Pooling)是一种常见的特征聚合方式,但在分布式环境下,其实现存在一些需要注意的技术细节。
问题现象
在使用torchrec的EmbeddingBagCollection组件时,当采用ROW_WISE分片策略进行分布式训练时,发现均值池化的计算结果与预期不符。具体表现为:
- 输入特征键(keys)分布在多个设备上时
- 每个设备上的局部计算结果被错误地除以了局部bag大小
- 最终通过SUM reduce scatter聚合后,结果数值偏大
技术原理分析
EmbeddingBagCollection的分布式计算流程
- 分片策略:ROW_WISE分片将embedding表按行切分到不同设备
- 前向计算:每个设备处理本地拥有的特征键
- 聚合操作:通过reduce scatter进行SUM聚合
均值池化的数学表达
标准的均值池化计算应为:
output = sum(embeddings) / total_bag_size
但在分布式实现中,FBGEMM库会在每个设备上先进行局部均值计算:
local_output = sum(local_embeddings) / local_bag_size
然后通过SUM聚合,导致最终结果为:
final_output = sum(local_output) = sum(sum(local_embeddings)/local_bag_size)
这与数学期望不符,造成了数值放大问题。
解决方案
该问题已在PyTorch Recsys的代码库中得到修复。核心解决思路是:
- 保持FBGEMM的局部SUM计算不变
- 取消局部除以bag size的操作
- 在全局聚合后统一进行均值计算
这种修改确保了分布式环境下的计算结果与单机情况一致,符合均值池化的数学定义。
实践建议
对于推荐系统开发者,在使用分布式EmbeddingBagCollection时应注意:
- 确保使用的torchrec版本已包含此修复
- 对于自定义实现,要特别注意分布式环境下聚合操作与池化类型的配合
- 测试阶段应验证分布式计算结果与单机结果的一致性
总结
分布式推荐系统开发中,类似均值池化这样的基础操作在分布式环境下的实现细节往往容易被忽视。PyTorch Recsys通过不断迭代完善,为开发者提供了更可靠的基础组件。理解这些底层实现原理,有助于开发者构建更加健壮的大规模推荐系统。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
422
3.25 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869