TorchRec中行式分片在多机环境下的行为解析
2025-07-04 13:36:59作者:宣利权Counsellor
概述
在使用TorchRec进行大规模推荐系统训练时,行式分片(Row-wise Sharding)是一种常见的嵌入表分片策略。本文将深入分析在多机多GPU环境下,TorchRec行式分片的具体行为及其背后的设计原理。
行式分片的基本概念
行式分片是指将嵌入表按行维度进行切分,每个GPU负责处理嵌入表的一部分行。这种分片方式特别适合处理超大规模的稀疏特征,因为它可以:
- 将巨大的嵌入表分散到多个设备上
- 每个设备只需存储和处理部分嵌入向量
- 减少单个设备的内存压力
多机环境下的分片行为
在实际部署中,当使用2台机器(每台8个A100 GPU,共16个GPU)处理1.6B行的嵌入表时,观察到以下现象:
- 预期行为:1.6B行均匀分片到16个GPU,每个GPU约100M行
- 实际行为:1.6B行先按机器数分片(每台机器800M行),然后在机器内部分片到8个GPU(每个GPU200M行)
这种分片行为实际上是表行式分片(Table Row-wise Sharding)而非纯行式分片(Row-wise Sharding)的表现。
设计原理分析
这种分片策略的设计考虑了几个关键因素:
- 网络通信效率:同一机器内的GPU间通信带宽远高于跨机器通信
- 数据局部性:保持相关数据在同一机器内可减少跨节点通信
- 故障隔离:机器级别的分片有利于容错处理
代码实现与控制
在TorchRec中,分片行为主要由ParameterConstraints控制。要实现真正的跨所有GPU的行式分片,需要显式指定ROW_WISE分片类型:
constraints = {
"table_name": ParameterConstraints(
sharding_types=[ShardingType.ROW_WISE]
)
}
性能考量
选择分片策略时需要权衡:
-
纯行式分片(ROW_WISE):
- 优点:内存使用最均衡
- 缺点:可能增加跨机器通信
-
表行式分片(TABLE_ROW_WISE):
- 优点:减少跨机器通信
- 缺点:单机内存压力较大
最佳实践建议
- 对于超大规模嵌入表(>1B行),优先考虑纯行式分片
- 在通信带宽受限的环境中,可考虑表行式分片
- 使用
model.plan属性验证实际分片情况 - 根据硬件配置调整分片策略,找到内存和通信的最佳平衡点
总结
TorchRec的分片策略提供了灵活的配置选项,理解不同分片类型的行为特点对于构建高效的分布式推荐系统至关重要。通过合理配置ParameterConstraints,开发者可以精确控制嵌入表的分片方式,从而优化内存使用和通信开销。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.72 K
暂无简介
Dart
635
144
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
651
275
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
React Native鸿蒙化仓库
JavaScript
245
316
Ascend Extension for PyTorch
Python
196
215