TorchRec中行式分片在多机环境下的行为解析
2025-07-04 05:20:52作者:宣利权Counsellor
概述
在使用TorchRec进行大规模推荐系统训练时,行式分片(Row-wise Sharding)是一种常见的嵌入表分片策略。本文将深入分析在多机多GPU环境下,TorchRec行式分片的具体行为及其背后的设计原理。
行式分片的基本概念
行式分片是指将嵌入表按行维度进行切分,每个GPU负责处理嵌入表的一部分行。这种分片方式特别适合处理超大规模的稀疏特征,因为它可以:
- 将巨大的嵌入表分散到多个设备上
- 每个设备只需存储和处理部分嵌入向量
- 减少单个设备的内存压力
多机环境下的分片行为
在实际部署中,当使用2台机器(每台8个A100 GPU,共16个GPU)处理1.6B行的嵌入表时,观察到以下现象:
- 预期行为:1.6B行均匀分片到16个GPU,每个GPU约100M行
- 实际行为:1.6B行先按机器数分片(每台机器800M行),然后在机器内部分片到8个GPU(每个GPU200M行)
这种分片行为实际上是表行式分片(Table Row-wise Sharding)而非纯行式分片(Row-wise Sharding)的表现。
设计原理分析
这种分片策略的设计考虑了几个关键因素:
- 网络通信效率:同一机器内的GPU间通信带宽远高于跨机器通信
- 数据局部性:保持相关数据在同一机器内可减少跨节点通信
- 故障隔离:机器级别的分片有利于容错处理
代码实现与控制
在TorchRec中,分片行为主要由ParameterConstraints
控制。要实现真正的跨所有GPU的行式分片,需要显式指定ROW_WISE
分片类型:
constraints = {
"table_name": ParameterConstraints(
sharding_types=[ShardingType.ROW_WISE]
)
}
性能考量
选择分片策略时需要权衡:
-
纯行式分片(ROW_WISE):
- 优点:内存使用最均衡
- 缺点:可能增加跨机器通信
-
表行式分片(TABLE_ROW_WISE):
- 优点:减少跨机器通信
- 缺点:单机内存压力较大
最佳实践建议
- 对于超大规模嵌入表(>1B行),优先考虑纯行式分片
- 在通信带宽受限的环境中,可考虑表行式分片
- 使用
model.plan
属性验证实际分片情况 - 根据硬件配置调整分片策略,找到内存和通信的最佳平衡点
总结
TorchRec的分片策略提供了灵活的配置选项,理解不同分片类型的行为特点对于构建高效的分布式推荐系统至关重要。通过合理配置ParameterConstraints
,开发者可以精确控制嵌入表的分片方式,从而优化内存使用和通信开销。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193