如何在ModelScope中正确加载Llava-OneVision多模态模型
2025-05-29 06:41:51作者:郜逊炳
背景介绍
ModelScope平台提供了丰富的预训练模型资源,其中Llava-OneVision系列是多模态大模型的重要代表。这类模型能够同时处理文本和图像输入,实现复杂的视觉-语言交互任务。然而,许多开发者在尝试加载这类模型时,经常会遇到配置类不匹配的问题。
常见错误分析
许多开发者习惯性地使用AutoModelForCausalLM来加载语言模型,但对于Llava-OneVision这样的多模态模型,这种做法会导致错误。错误信息通常会显示"Unrecognized configuration class",表明自动模型类无法识别Llava-OneVision特有的配置。
这种错误源于模型架构的差异。Llava-OneVision不是纯粹的因果语言模型(CausalLM),而是条件生成模型(ConditionalGeneration),它需要特殊的处理器来处理图像和文本的联合输入。
正确加载方法
要正确加载Llava-OneVision模型,应当使用专门的模型类和处理器:
- 模型下载:首先通过ModelScope的snapshot_download方法获取模型
from modelscope import snapshot_download
model_dir = snapshot_download("AI-ModelScope/llava-onevision-qwen2-0.5b-si-hf")
- 模型加载:使用专用的LlavaOnevisionForConditionalGeneration类
from transformers import LlavaOnevisionForConditionalGeneration, AutoProcessor
import torch
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
model_dir,
torch_dtype=torch.float16,
low_cpu_mem_usage=True
).to(0) # 使用GPU设备
processor = AutoProcessor.from_pretrained(model_dir)
模型使用示例
加载模型后,可以按照以下流程进行多模态推理:
- 准备对话历史:构建包含文本和图像输入的对话格式
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "图片中有什么?"},
{"type": "image"},
],
},
]
- 生成提示模板:使用处理器格式化输入
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
- 处理图像输入:加载并预处理图像
from PIL import Image
raw_image = Image.open("example.jpg") # 本地图片路径
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16)
- 生成输出:使用模型生成响应
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
技术要点总结
- 多模态模型需要专门的模型类和处理器,不能简单地使用通用的AutoModel类
- Llava-OneVision使用条件生成架构,而非纯语言模型架构
- 输入需要特殊格式化,同时包含文本和图像信息
- 处理器(Processor)负责统一处理多模态输入,包括图像预处理和文本token化
通过正确理解模型架构和使用专门的加载方法,开发者可以充分利用Llava-OneVision强大的多模态能力,构建丰富的视觉-语言应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355