TiKV 项目中的 Follower Read Cache 特性解析
背景与问题
在分布式数据库系统中,TiKV 作为 TiDB 的底层存储引擎,面临着高并发读取请求的挑战。传统的主从架构中,所有读取请求默认都会发送到 Leader 节点,这可能导致 Leader 节点成为性能瓶颈。为了解决这个问题,TiKV 实现了 Follower Read(从节点读取)功能,允许读取请求被分发到 Follower 节点执行,从而分担 Leader 节点的负载。
然而,在实际使用中发现,Follower Read 操作消耗的 CPU 资源是 Leader 节点读取或 Stale Read(过期读取)的两倍。这种额外的资源消耗主要来自于 Follower 节点需要处理更复杂的读取逻辑,包括与 Leader 节点的数据一致性验证等操作。
解决方案设计
为了优化 Follower Read 的性能和可靠性,TiKV 团队提出了 Follower Read Cache 的设计方案。该方案的核心思想是在 Follower 节点上引入一个缓存层,用于存储最近读取的数据。当后续读取请求到达时,Follower 节点可以先检查缓存中是否存在有效的数据副本,如果存在则直接返回,避免重复执行昂贵的读取操作。
缓存设计考虑了以下几个关键方面:
- 缓存一致性:确保缓存中的数据与 Leader 节点保持足够的新鲜度,不会返回过于陈旧的数据
- 缓存淘汰策略:采用合理的缓存替换算法,确保热点数据能够保留在缓存中
- 内存管理:控制缓存的内存使用量,避免影响系统的整体稳定性
- 并发控制:处理多个并发读取请求对同一缓存项的访问
实现细节
在具体实现上,Follower Read Cache 采用了多层次的缓存结构:
- Region 级别缓存:存储整个 Region 的最近读取数据
- Key-Value 对缓存:针对热点键值对进行细粒度缓存
- 版本控制:每个缓存项都带有版本信息,用于验证数据的新鲜度
缓存更新策略采用了写时无效(write-invalidate)机制,当 Leader 节点数据发生变化时,会通知 Follower 节点使相关缓存项失效。这种设计在保证数据一致性的同时,最小化了网络通信开销。
性能优化
通过引入 Follower Read Cache,TiKV 实现了以下性能提升:
- 降低 CPU 使用率:缓存命中可以避免重复执行昂贵的读取逻辑
- 减少网络往返:减少了 Follower 节点与 Leader 节点之间的协调通信
- 提高吞吐量:系统可以处理更多的并发读取请求
- 降低延迟:缓存命中时的读取延迟显著降低
适用场景
Follower Read Cache 特别适合以下场景:
- 读多写少的工作负载:当系统主要处理读取请求时,缓存可以发挥最大效益
- 热点数据访问:对于频繁访问的数据,缓存能显著提高性能
- 地理分布式部署:在跨数据中心的部署中,可以减少跨数据中心的读取延迟
总结
TiKV 的 Follower Read Cache 特性通过引入智能缓存机制,有效解决了 Follower Read 操作资源消耗过高的问题。这一优化不仅提高了系统性能,还增强了系统的可扩展性,使得 TiKV 能够更好地应对大规模数据访问场景。随着分布式数据库系统的不断发展,类似的数据访问优化策略将变得越来越重要。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00