XGBoost Serving 开源项目教程
2024-08-07 13:20:55作者:裘晴惠Vivianne
项目介绍
XGBoost Serving 是一个灵活且高性能的推理系统,专为生产环境中的 XGBoost 和 FM 模型设计。它处理 XGBoost 和 FM 模型的推理方面,管理模型在训练后的生命周期,并通过高性能的引用计数查找表为客户端提供版本化访问。XGBoost Serving 源自 TensorFlow Serving,并在某知名视频平台内部广泛使用。
项目快速启动
使用 Docker 快速启动
我们推荐使用 Docker 镜像来快速构建和使用 XGBoost Serving,除非你有特定的需求无法通过容器运行来满足。
# 拉取 XGBoost Serving 的 Docker 镜像
docker pull iqiyi/xgboost-serving:latest
# 运行 Docker 容器
docker run -d -p 8080:8080 iqiyi/xgboost-serving:latest
从源码构建
如果你需要从源码构建 XGBoost Serving,可以使用以下步骤:
# 克隆项目仓库
git clone https://github.com/iqiyi/xgboost-serving.git
# 进入项目目录
cd xgboost-serving
# 使用 Docker 构建
docker build -t xgboost-serving .
# 运行构建的镜像
docker run -d -p 8080:8080 xgboost-serving
应用案例和最佳实践
应用案例
XGBoost Serving 在某知名视频平台内部被广泛用于各种机器学习模型的推理服务,例如视频推荐系统、用户行为预测等。以下是一个简单的应用案例:
import requests
# 准备推理请求
inference_request = {
    "instances": [
        {"feature1": 0.1, "feature2": 0.2, "feature3": 0.3}
    ]
}
# 发送推理请求
response = requests.post("http://localhost:8080/v2/models/mushroom-xgboost/versions/v0.1.0/infer", json=inference_request)
# 解析响应
print(response.json())
最佳实践
- 版本管理:使用版本化管理模型,确保在部署新版本时不会影响现有客户端。
 - A/B 测试:支持 A/B 测试和金丝雀发布新版本模型。
 - 性能优化:通过高效的低开销实现,最小化推理延迟。
 
典型生态项目
XGBoost Serving 作为 TensorFlow Serving 的一个衍生项目,与 TensorFlow 生态系统紧密结合。以下是一些典型的生态项目:
- TensorFlow Serving:高性能、灵活的机器学习模型服务系统。
 - XGBoost:高效、灵活、可扩展的梯度提升框架。
 - Docker:容器化解决方案,简化部署和扩展。
 
通过这些生态项目的结合,XGBoost Serving 能够提供一个完整的机器学习模型服务解决方案。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
272
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
231
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
444