Compose Hot Reload项目发布v1.0.0-alpha09版本:优化组检测算法与构件迁移
Compose Hot Reload是JetBrains推出的一个用于提升JetBrains Compose开发效率的工具,它能够在开发过程中实现代码的热重载,让开发者无需重新编译整个应用就能看到代码修改后的效果。最新发布的v1.0.0-alpha09版本带来了两项重要改进:全新的组检测与失效算法,以及项目构件的迁移调整。
全新的Compose组检测与失效算法
这个版本最核心的改进是实现了全新的字节码令牌解析算法。在Compose框架中,正确地检测组件组并处理失效逻辑对于热重载功能至关重要。之前的版本在处理'jump'指令时存在一些问题,可能导致热重载在某些情况下无法正确工作。
新算法具有以下技术特点:
-
线性时间复杂度:算法优化后能够在O(n)时间内完成解析,相比之前可能存在的非线性复杂度,显著提升了处理效率。
-
完善的跳转指令处理:特别改进了对字节码中'jump'指令的处理逻辑,确保在各种控制流情况下都能正确识别组件组。
-
更可靠的失效机制:基于新的解析算法,组件状态的失效判断更加准确,减少了误判和漏判的情况。
这项改进对于开发者意味着更稳定、更可靠的热重载体验,特别是在处理复杂控制流和条件渲染的Compose代码时。
项目构件迁移
另一个重要变化是项目构件的命名规范调整。从这一版本开始,所有相关构件的groupId保持不变,但artifactId从原来的org.jetbrains.compose.hot-reload:{{module}}格式变更为org.jetbrains.compose.hot-reload:hot-reload-{{module}}格式。
这种变更带来的影响包括:
-
更清晰的命名规范:新的命名方式使模块用途更加一目了然,便于依赖管理。
-
过渡期注意事项:虽然大多数开发者通过Gradle插件间接使用这些构件,不需要直接修改配置,但如果有直接依赖这些构件的情况,需要在升级时相应调整构建脚本。
-
未来兼容性:JetBrains建议开发者在beta版本发布前完成迁移,以确保后续版本的平滑升级。
技术建议
对于正在使用或计划使用Compose Hot Reload的开发者,建议:
-
在测试环境中先行验证新版本,特别是检查复杂控制流下的热重载行为。
-
检查项目构建脚本,确认是否有直接依赖hot-reload构件的情况,如有则需要更新artifactId。
-
关注后续beta版本的发布计划,及时获取稳定性改进。
这个alpha版本的发布标志着Compose Hot Reload在稳定性和可靠性方面又向前迈进了一步,为开发者提供了更高效的Compose开发体验。随着算法的优化和项目结构的规范化,我们可以期待在不久的将来看到一个更加成熟的正式版本。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00