AWS Deep Learning Containers发布TensorFlow 2.18.0推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组经过优化和测试的Docker镜像,用于简化深度学习工作负载的部署。这些容器预装了流行的深度学习框架、依赖项和工具,使开发人员能够快速启动和运行深度学习应用程序。
近日,AWS DLC项目发布了TensorFlow 2.18.0推理镜像的新版本,为开发者提供了更高效、更稳定的深度学习推理环境。这些镜像基于Ubuntu 20.04操作系统构建,支持Python 3.10环境,并针对CPU和GPU计算进行了专门优化。
镜像版本详情
本次发布的TensorFlow推理镜像包含两个主要变体:
-
CPU版本:适用于仅使用CPU进行推理的场景,镜像标签为
tensorflow-inference:2.18.0-cpu-py310-ubuntu20.04-sagemaker-v1.1。该版本包含了TensorFlow Serving API 2.18.0以及必要的Python依赖项,如PyYAML、boto3、protobuf等。 -
GPU版本:针对NVIDIA GPU加速计算优化,使用CUDA 12.2和cuDNN 8,镜像标签为
tensorflow-inference:2.18.0-gpu-py310-cu122-ubuntu20.04-sagemaker-v1.1。除了包含CPU版本的所有功能外,还预装了GPU相关的库如libcublas、libcudnn8和NCCL等,以充分发挥GPU的计算能力。
关键特性与改进
-
TensorFlow 2.18.0支持:新版本基于TensorFlow 2.18.0构建,包含了该版本的所有功能和性能改进,为推理任务提供了更稳定和高效的运行环境。
-
Python 3.10兼容性:镜像预装了Python 3.10环境,支持最新的Python特性,同时保持了与现有代码的兼容性。
-
优化的依赖管理:镜像中包含了经过严格测试的依赖项版本组合,如PyYAML 6.0.2、protobuf 4.25.5等,确保各组件间的兼容性和稳定性。
-
AWS工具集成:预装了AWS CLI、boto3等AWS工具,方便用户与AWS服务进行交互,简化了云上部署流程。
-
开发工具支持:镜像中包含了Emacs等开发工具,便于开发者在容器内进行代码编辑和调试。
适用场景
这些TensorFlow推理镜像特别适合以下应用场景:
-
生产环境部署:为TensorFlow模型提供稳定、高效的推理服务环境。
-
云原生应用:与Amazon SageMaker等AWS服务无缝集成,支持大规模模型部署。
-
本地开发与测试:提供与生产环境一致的本地开发环境,减少"在我机器上能运行"的问题。
-
持续集成/持续部署(CI/CD):作为标准化构建块,简化机器学习模型的部署流程。
使用建议
对于需要高性能推理的场景,建议使用GPU版本镜像,它能充分利用NVIDIA GPU的并行计算能力。而对于成本敏感或不需要GPU加速的应用,CPU版本是更经济的选择。
开发者可以直接从AWS ECR仓库拉取这些镜像,无需自行配置复杂的依赖环境。镜像已经过AWS的严格测试和优化,确保了在生产环境中的可靠性和性能。
随着深度学习应用的普及,AWS Deep Learning Containers提供的这些预构建、优化过的镜像将大大降低开发者部署机器学习模型的复杂度,加速AI应用的落地进程。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00