TabularSemanticParsing 项目教程
2024-09-25 09:43:37作者:郁楠烈Hubert
1. 项目介绍
TabularSemanticParsing 是一个开源项目,旨在将自然语言问题翻译成结构化查询语言(SQL)。该项目由 Salesforce 开发,主要用于跨域的表格语义解析任务。通过该项目的模型,用户可以将自然语言问题转换为可执行的 SQL 查询,适用于各种数据库。
该项目的主要特点包括:
- 跨域解析:模型可以在未见过的数据库上进行训练和预测。
- 高性能:在 Spider 和 WikiSQL 两个广泛使用的基准数据集上取得了最先进的性能。
- 灵活性:支持通过修改预处理和后处理模块来适应其他结构化查询语言,如 SOQL。
2. 项目快速启动
2.1 安装依赖
首先,克隆项目仓库并安装必要的依赖:
git clone https://github.com/salesforce/TabularSemanticParsing.git
cd TabularSemanticParsing
pip install torch torchvision
python3 -m pip install -r requirements.txt
2.2 设置环境
设置环境变量:
export PYTHONPATH=`pwd` && python -m nltk.downloader punkt
2.3 处理数据
2.3.1 Spider 数据集
下载并处理 Spider 数据集:
wget https://github.com/salesforce/TabularSemanticParsing/raw/master/data/spider.zip
unzip spider.zip
mv spider data/
python3 data/spider/scripts/amend_missing_foreign_keys.py data/spider
2.3.2 WikiSQL 数据集
下载并处理 WikiSQL 数据集:
wget https://github.com/salesforce/WikiSQL/raw/master/data.tar.bz2
tar xf data.tar.bz2 -C data && mv data/data data/wikisql1.1
2.4 训练模型
使用以下命令训练模型:
./experiment-bridge.sh configs/bridge/spider-bridge-bert-large.sh --train 0
2.5 推理
使用预训练模型进行推理:
./experiment-bridge.sh configs/bridge/spider-bridge-bert-large.sh --inference 0
3. 应用案例和最佳实践
3.1 应用案例
TabularSemanticParsing 可以应用于各种需要将自然语言转换为 SQL 查询的场景,例如:
- 数据分析:用户可以通过自然语言提问来查询数据库,无需编写复杂的 SQL 语句。
- 智能客服:客服系统可以通过自然语言理解用户的问题,并自动生成相应的 SQL 查询来获取答案。
3.2 最佳实践
- 数据预处理:确保数据集的格式正确,特别是数据库 schema 和字段信息。
- 模型调优:根据具体应用场景调整模型的超参数,以获得最佳性能。
- 集成测试:在实际应用中,建议进行充分的集成测试,确保模型在不同数据库上的表现稳定。
4. 典型生态项目
TabularSemanticParsing 可以与其他开源项目结合使用,以构建更强大的自然语言处理系统。以下是一些典型的生态项目:
- NLTK:用于自然语言处理的库,可以与 TabularSemanticParsing 结合进行文本预处理。
- PyTorch:深度学习框架,TabularSemanticParsing 基于 PyTorch 实现。
- Spider:用于评估文本到 SQL 解析性能的基准数据集。
通过这些生态项目的结合,用户可以构建一个完整的自然语言到 SQL 查询的解决方案。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
198
279

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
535
62

Ascend Extension for PyTorch
Python
50
81

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
556

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1 K
397

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
385
19

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191