使用NEMoS项目分析海马位置细胞的神经编码特性
2025-06-18 23:15:11作者:昌雅子Ethen
前言
本文将介绍如何使用NEMoS项目中的工具来分析海马位置细胞的神经编码特性。海马位置细胞是空间导航研究中的重要神经元类型,它们会在动物处于特定空间位置时表现出较高的放电频率。我们将通过实际数据分析,展示如何建立位置细胞的编码模型。
数据准备
数据来源
我们使用的数据来自Grosmark和Buzsáki在2016年发表的Science论文,记录了小鼠在直线轨道上运动时的神经活动、位置信息和theta节律相位。
数据加载与预处理
首先,我们使用pynapple库加载NWB格式的神经数据文件:
import nemos as nmo
import pynapple as nap
# 加载数据
path = nmo.fetch.fetch_data("Achilles_10252013.nwb")
data = nap.load_file(path)
数据提取
从加载的数据中提取关键信息:
# 提取尖峰时间、位置信息和theta相位
spikes = data["units"]
position = data["position"]
theta = data["theta_phase"]
# 限制分析范围到直线轨道运动期间
position = position.restrict(data["runs"])
# 筛选兴奋性神经元
spikes = spikes.getby_category("cell_type")["pE"]
spikes = spikes.getby_threshold("rate", 0.3) # 去除低放电率神经元
基础分析
位置场计算
位置场(position field)是位置细胞最显著的特征,表示神经元在不同位置的放电率分布:
# 计算位置场
pf = nap.compute_1d_tuning_curves(spikes, position, 50, position.time_support)
# 按峰值位置排序
order = pf.idxmax().sort_values().index.values
相位进动分析
位置细胞还表现出theta相位进动现象,即放电相位会随位置变化:
# 调整数据采样率
bin_size = 0.005
theta = theta.bin_average(bin_size, position.time_support)
theta = (theta + 2 * np.pi) % (2 * np.pi)
# 创建包含位置和相位的数据结构
data = nap.TsdFrame(
t=theta.t,
d=np.vstack((position.interpolate(theta).values, theta.values)).T,
time_support=position.time_support,
columns=["position", "theta"],
)
速度调制分析
我们还分析了运动速度对神经元放电的影响:
# 计算运动速度
speed = []
for s, e in data.time_support.values:
pos_ep = data["position"].get(s, e)
speed_ep = np.abs(np.diff(pos_ep))
speed_ep = np.pad(speed_ep, [0, 1], mode="edge") * data.rate
speed.append(speed_ep)
speed = nap.Tsd(t=data.t, d=np.hstack(speed), time_support=data.time_support)
# 计算速度调谐曲线
tc_speed = nap.compute_1d_tuning_curves(spikes, speed, 20)
建模分析
基函数选择
我们使用不同的基函数组合来建模神经活动:
# 定义各种基函数
position_basis = nmo.basis.MSplineEval(n_basis_funcs=10, label="position")
phase_basis = nmo.basis.CyclicBSplineEval(n_basis_funcs=12, label="theta_phase")
speed_basis = nmo.basis.MSplineEval(n_basis_funcs=15, label="speed")
# 组合基函数
basis = position_basis * phase_basis + speed_basis
basis.label = "full_design"
模型训练
使用Poisson GLM模型进行训练:
# 准备设计矩阵
X = basis.compute_features(position, theta, speed)
count = spikes[neuron].count(bin_size, data.time_support)
# 训练模型
glm = nmo.glm.GLM(solver_kwargs=dict(tol=10**-12), solver_name="LBFGS")
glm.fit(X, count)
模型预测与验证
评估模型预测效果:
# 预测放电率
predicted_rate = glm.predict(X) / bin_size
# 计算预测的调谐曲线
glm_pf = nap.compute_1d_tuning_curves_continuous(predicted_rate[:, np.newaxis], position, 50)
glm_pos_theta = nap.compute_2d_tuning_curves_continuous(predicted_rate[:, np.newaxis], data, 30)
glm_speed = nap.compute_1d_tuning_curves_continuous(predicted_rate[:, np.newaxis], speed, 30)
模型比较
我们比较了不同特征组合的模型表现:
models = {
"position": position_basis,
"position + speed": position_basis + speed_basis,
"position * phase": position_basis * phase_basis,
"position * phase + speed": position_basis * phase_basis + speed_basis,
}
# 训练和评估各模型
scores = {}
for m in models:
X = models[m].compute_features(*features[m])
glm.fit(X.restrict(train_iset), count.restrict(train_iset))
scores[m] = glm.score(X.restrict(test_iset), count.restrict(test_iset))
结论
通过NEMoS项目提供的工具,我们能够系统地分析位置细胞的编码特性。实验结果表明:
- 位置信息是位置细胞放电的最主要决定因素
- theta相位调制提供了额外的编码维度
- 运动速度对放电率也有显著影响
- 综合考虑位置、相位和速度的模型表现最佳
这种分析方法可以扩展到研究其他类型的神经元编码特性,为理解神经信息处理机制提供了有力工具。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
218
88
暂无简介
Dart
720
174
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
334
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
435
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19