使用NEMoS项目分析海马位置细胞的神经编码特性
2025-06-18 08:53:30作者:昌雅子Ethen
前言
本文将介绍如何使用NEMoS项目中的工具来分析海马位置细胞的神经编码特性。海马位置细胞是空间导航研究中的重要神经元类型,它们会在动物处于特定空间位置时表现出较高的放电频率。我们将通过实际数据分析,展示如何建立位置细胞的编码模型。
数据准备
数据来源
我们使用的数据来自Grosmark和Buzsáki在2016年发表的Science论文,记录了小鼠在直线轨道上运动时的神经活动、位置信息和theta节律相位。
数据加载与预处理
首先,我们使用pynapple库加载NWB格式的神经数据文件:
import nemos as nmo
import pynapple as nap
# 加载数据
path = nmo.fetch.fetch_data("Achilles_10252013.nwb")
data = nap.load_file(path)
数据提取
从加载的数据中提取关键信息:
# 提取尖峰时间、位置信息和theta相位
spikes = data["units"]
position = data["position"]
theta = data["theta_phase"]
# 限制分析范围到直线轨道运动期间
position = position.restrict(data["runs"])
# 筛选兴奋性神经元
spikes = spikes.getby_category("cell_type")["pE"]
spikes = spikes.getby_threshold("rate", 0.3) # 去除低放电率神经元
基础分析
位置场计算
位置场(position field)是位置细胞最显著的特征,表示神经元在不同位置的放电率分布:
# 计算位置场
pf = nap.compute_1d_tuning_curves(spikes, position, 50, position.time_support)
# 按峰值位置排序
order = pf.idxmax().sort_values().index.values
相位进动分析
位置细胞还表现出theta相位进动现象,即放电相位会随位置变化:
# 调整数据采样率
bin_size = 0.005
theta = theta.bin_average(bin_size, position.time_support)
theta = (theta + 2 * np.pi) % (2 * np.pi)
# 创建包含位置和相位的数据结构
data = nap.TsdFrame(
t=theta.t,
d=np.vstack((position.interpolate(theta).values, theta.values)).T,
time_support=position.time_support,
columns=["position", "theta"],
)
速度调制分析
我们还分析了运动速度对神经元放电的影响:
# 计算运动速度
speed = []
for s, e in data.time_support.values:
pos_ep = data["position"].get(s, e)
speed_ep = np.abs(np.diff(pos_ep))
speed_ep = np.pad(speed_ep, [0, 1], mode="edge") * data.rate
speed.append(speed_ep)
speed = nap.Tsd(t=data.t, d=np.hstack(speed), time_support=data.time_support)
# 计算速度调谐曲线
tc_speed = nap.compute_1d_tuning_curves(spikes, speed, 20)
建模分析
基函数选择
我们使用不同的基函数组合来建模神经活动:
# 定义各种基函数
position_basis = nmo.basis.MSplineEval(n_basis_funcs=10, label="position")
phase_basis = nmo.basis.CyclicBSplineEval(n_basis_funcs=12, label="theta_phase")
speed_basis = nmo.basis.MSplineEval(n_basis_funcs=15, label="speed")
# 组合基函数
basis = position_basis * phase_basis + speed_basis
basis.label = "full_design"
模型训练
使用Poisson GLM模型进行训练:
# 准备设计矩阵
X = basis.compute_features(position, theta, speed)
count = spikes[neuron].count(bin_size, data.time_support)
# 训练模型
glm = nmo.glm.GLM(solver_kwargs=dict(tol=10**-12), solver_name="LBFGS")
glm.fit(X, count)
模型预测与验证
评估模型预测效果:
# 预测放电率
predicted_rate = glm.predict(X) / bin_size
# 计算预测的调谐曲线
glm_pf = nap.compute_1d_tuning_curves_continuous(predicted_rate[:, np.newaxis], position, 50)
glm_pos_theta = nap.compute_2d_tuning_curves_continuous(predicted_rate[:, np.newaxis], data, 30)
glm_speed = nap.compute_1d_tuning_curves_continuous(predicted_rate[:, np.newaxis], speed, 30)
模型比较
我们比较了不同特征组合的模型表现:
models = {
"position": position_basis,
"position + speed": position_basis + speed_basis,
"position * phase": position_basis * phase_basis,
"position * phase + speed": position_basis * phase_basis + speed_basis,
}
# 训练和评估各模型
scores = {}
for m in models:
X = models[m].compute_features(*features[m])
glm.fit(X.restrict(train_iset), count.restrict(train_iset))
scores[m] = glm.score(X.restrict(test_iset), count.restrict(test_iset))
结论
通过NEMoS项目提供的工具,我们能够系统地分析位置细胞的编码特性。实验结果表明:
- 位置信息是位置细胞放电的最主要决定因素
- theta相位调制提供了额外的编码维度
- 运动速度对放电率也有显著影响
- 综合考虑位置、相位和速度的模型表现最佳
这种分析方法可以扩展到研究其他类型的神经元编码特性,为理解神经信息处理机制提供了有力工具。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
178
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
288
323

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
600
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3