使用NeMoS进行电流注入实验的神经元放电率建模分析
2025-06-18 03:31:49作者:劳婵绚Shirley
引言
本文将通过一个实际案例,展示如何使用NeMoS工具包对神经元在电流注入实验中的响应进行建模。我们将分析来自小鼠初级视觉皮层第4层单个神经元的膜片钳记录数据,这些数据来自著名的Allen Brain Atlas数据库。
实验数据概述
实验采用"噪声1"刺激模式,向神经元注入三个电流脉冲。每个脉冲是一个带有固定频率正弦波和随机噪声的方波电流。我们主要关注以下两个数据维度:
- 输入电流:实验者注入的电流信号
- 神经元放电:记录到的动作电位时间点
数据预处理
数据加载与初步处理
我们使用Pynapple工具包加载NWB格式的实验数据:
import pynapple as nap
import numpy as np
# 加载数据文件
data = nap.load_file("allen_478498617.nwb")
# 提取关键数据
trial_interval_set = data["epochs"] # 实验时间区间
current = data["stimulus"] # 输入电流
spikes = data["units"] # 神经元放电时间
数据筛选与转换
我们专注于"噪声1"刺激的第一个脉冲:
# 筛选特定刺激区间
noise_interval = trial_interval_set[trial_interval_set.tags == "Noise 1"][0]
# 限制数据范围并转换单位
current = current.restrict(noise_interval) * 1e12 # 转换为pA
spikes = spikes.restrict(noise_interval) # 限制放电时间范围
数据分析
放电率估计
通过高斯平滑处理获得近似放电率:
bin_size = 0.001 # 1ms的bin大小
count = spikes[0].count(bin_size) # 分bin计数
firing_rate = count.smooth(std=0.05, size_factor=20) / bin_size # 平滑并转换为Hz
电流-放电率关系分析
计算神经元的调谐曲线:
tuning_curve = nap.compute_1d_tuning_curves(spikes, current, nb_bins=15)
分析结果显示放电率与注入电流呈非线性关系,随着电流增大,放电率并非线性增加,而是在高电流时可能出现下降趋势。
使用NeMoS构建GLM模型
数据准备
将数据转换为适合GLM建模的格式:
import jax.numpy as jnp
import nemos as nmo
# 电流信号降采样
binned_current = current.bin_average(bin_size)
# 准备模型输入
predictor = np.expand_dims(binned_current, 1) # 转换为(n_time_bins, 1)
count = spikes[0].count(bin_size) # 放电计数
模型构建与拟合
建立并训练广义线性模型:
# 初始化GLM模型
model = nmo.glm.GLM(regularizer=nmo.regularizer.UnRegularized())
# 模型拟合
model.fit(predictor, count)
模型评估
提取模型参数并分析:
# 获取模型权重
weights = model.coef_
# 生成预测放电率
predicted_rate = model.predict(predictor)
关键发现与讨论
-
非线性输入-输出关系:模型成功捕捉到神经元放电率与注入电流之间的非线性关系,这与调谐曲线分析结果一致。
-
适应性现象:模型能够反映神经元在持续刺激下放电率逐渐降低的现象,表明神经元存在适应性机制。
-
周期性响应:模型预测的放电模式显示出与输入电流相似的周期性,说明神经元对输入信号的时序特征具有选择性响应。
结论
通过NeMoS构建的GLM模型能够有效描述神经元在电流注入实验中的响应特性。该方法不仅适用于此类控制实验,也可扩展应用于更复杂的神经编码研究。模型揭示了神经元输入-输出转换的非线性特性,为理解神经信息处理机制提供了量化工具。
进一步研究方向
- 考虑更复杂的刺激模式下的神经元响应建模
- 引入突触后电位等生物物理机制扩展模型
- 探索群体神经元活动的耦合效应
- 将模型应用于在体记录数据分析
本教程展示了NeMoS在计算神经科学研究中的实用价值,为神经编码与解码问题提供了有力的分析工具。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
317
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
157
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
242
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K