首页
/ Bayesian Machine Learning 项目教程

Bayesian Machine Learning 项目教程

2024-09-24 09:05:56作者:余洋婵Anita

1. 项目介绍

bayesian-machine-learning 是一个开源项目,专注于贝叶斯机器学习方法的实现和应用。该项目由 Martin Krasser 创建,旨在提供一系列关于贝叶斯方法的 Jupyter Notebook 示例,涵盖了从基础的贝叶斯线性回归到高斯过程、贝叶斯优化、变分推断等多个领域。

项目的主要特点包括:

  • 丰富的示例:提供了多种贝叶斯方法的实现,包括高斯过程、贝叶斯优化、变分推断等。
  • 多种实现方式:示例代码不仅使用纯 NumPy 和 SciPy 实现,还结合了 scikit-learn、Keras、TensorFlow 等流行库。
  • 易于理解:每个示例都配有详细的解释和公式,适合初学者和进阶用户。

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了 Python 和 Jupyter Notebook。然后,克隆项目并安装依赖:

git clone https://github.com/krasserm/bayesian-machine-learning.git
cd bayesian-machine-learning
pip install -r requirements.txt

2.2 运行示例

以下是一个简单的贝叶斯线性回归示例的运行步骤:

  1. 打开 Jupyter Notebook:
jupyter notebook
  1. 在 Jupyter Notebook 界面中,导航到 bayesian-linear-regression 目录,打开 bayesian_linear_regression.ipynb

  2. 按照 Notebook 中的说明运行代码。

3. 应用案例和最佳实践

3.1 贝叶斯线性回归

贝叶斯线性回归是一种基于贝叶斯理论的线性回归方法,能够提供模型参数的不确定性估计。该项目中的示例展示了如何使用 NumPy 和 scikit-learn 实现贝叶斯线性回归,并提供了 PyMC3 的实现作为参考。

3.2 高斯过程

高斯过程是一种强大的非参数模型,广泛应用于回归和分类任务。项目中的示例涵盖了高斯过程的基本概念、实现方法以及在回归和分类中的应用。

3.3 贝叶斯优化

贝叶斯优化是一种用于全局优化的方法,特别适用于目标函数评估成本高的情况。项目中的示例展示了如何使用 scikit-optimize 和 GPyOpt 实现贝叶斯优化,并应用于超参数调优。

4. 典型生态项目

4.1 PyMC3

PyMC3 是一个用于贝叶斯统计建模的 Python 库,提供了强大的概率编程功能。该项目中的贝叶斯线性回归示例提供了 PyMC3 的实现,展示了如何使用 PyMC3 进行贝叶斯推断。

4.2 TensorFlow Probability

TensorFlow Probability 是 TensorFlow 的一个扩展库,专注于概率编程和统计推断。项目中的变分推断示例使用了 TensorFlow Probability,展示了如何构建贝叶斯神经网络并进行变分推断。

4.3 scikit-learn

scikit-learn 是一个广泛使用的机器学习库,提供了丰富的算法和工具。项目中的高斯过程和贝叶斯优化示例使用了 scikit-learn,展示了如何结合 scikit-learn 进行贝叶斯方法的实现。

通过这些生态项目的结合,bayesian-machine-learning 项目为用户提供了全面的贝叶斯机器学习解决方案。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.92 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
929
553
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8