CloudSimPy 开源项目教程
1. 项目介绍
CloudSimPy 是一个基于离散事件仿真框架 SimPy 的数据中心作业调度仿真框架,使用 Python 语言实现。它旨在帮助研究人员和开发者模拟和研究数据中心中的作业调度问题。CloudSimPy 结合了 Python 强大的科学计算、深度学习和机器学习生态,能够与支持 Python 的深度学习框架(如 TensorFlow 和 PyTorch)无缝集成,从而支持基于机器学习或深度学习的资源管理方法的研究。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统上安装了以下依赖:
- Python 3.6
- SimPy 3.0.11
- TensorFlow 1.12.0
- Numpy 1.15.3
- Pandas 0.23.4
2.2 安装 CloudSimPy
首先,克隆 CloudSimPy 仓库到本地:
git clone https://github.com/FengcunLi/CloudSimPy.git
然后,将 CloudSimPy 目录添加到系统的 PYTHONPATH
环境变量中:
export PYTHONPATH=$PYTHONPATH:/path/to/cloudsimpy
2.3 运行示例
进入 playground/Non_DAG/launch_scripts
目录,运行示例脚本:
cd cloudsimpy/playground/Non_DAG/launch_scripts
python main-makespan.py
3. 应用案例和最佳实践
3.1 基于深度强化学习的作业调度
CloudSimPy 提供了一个基于深度强化学习(DRL)的作业调度算法示例,位于 playground/Non_DAG/algorithm/DeepJS/DRL.py
。该算法使用 TensorFlow 实现,并在其 eager 模式下进行推断和训练。
3.2 自定义调度算法
用户可以通过实现 core
包中的 alogrithm
模块中的调度算法接口,来定义自己的调度算法。以下是一个简单的自定义调度算法示例:
from core.alogrithm import SchedulerAlgorithm
class MySchedulerAlgorithm(SchedulerAlgorithm):
def schedule(self, cluster, jobs):
# 自定义调度逻辑
pass
4. 典型生态项目
4.1 SimPy
SimPy 是一个基于 Python 的离散事件仿真框架,CloudSimPy 基于 SimPy 构建,提供了更高层次的抽象和功能,用于模拟数据中心作业调度。
4.2 TensorFlow
TensorFlow 是一个开源的机器学习框架,CloudSimPy 中的深度强化学习调度算法使用 TensorFlow 实现,展示了如何将机器学习技术应用于作业调度问题。
4.3 PyTorch
PyTorch 是另一个流行的深度学习框架,CloudSimPy 的设计使其能够与 PyTorch 等其他深度学习框架无缝集成,支持更广泛的研究和应用场景。
通过本教程,您应该已经掌握了 CloudSimPy 的基本使用方法,并了解了如何在其基础上进行扩展和定制。希望 CloudSimPy 能够帮助您在数据中心作业调度领域取得更多研究成果。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









