VisemeNet_tensorflow 项目使用教程
1. 项目介绍
VisemeNet_tensorflow 是一个基于 TensorFlow 的开源项目,旨在通过音频输入生成对应的可视化口型(viseme)数据。该项目主要应用于动画制作、虚拟角色对话等领域,能够将音频信号转换为面部表情动画,使得虚拟角色的对话更加自然和生动。
2. 项目快速启动
2.1 环境准备
首先,确保你的系统环境满足以下要求:
- Python 3.5
- TensorFlow 1.1.0
- Cudnn 5.0
你可以使用 Conda 创建一个虚拟环境并安装所需的 Python 包:
conda create -n visnet python=3.5
conda activate visnet
pip install --ignore-installed --upgrade https://download.tensorflow.google.cn/linux/gpu/tensorflow_gpu-1.1.0-cp35-cp35m-linux_x86_64.whl
pip install numpy scipy python_speech_features matplotlib
2.2 下载项目
克隆 VisemeNet_tensorflow 项目到本地:
git clone https://github.com/yzhou359/VisemeNet_tensorflow.git
cd VisemeNet_tensorflow
2.3 数据准备
将你的测试音频文件转换为 44.1kHz、16-bit 的 WAV 格式,并放置在 data/test_audio/
目录下。
下载公共面部模型并将其放置在 data/ckpt/pretrain_biwi/
目录下。
2.4 运行推理
在 main_test.py
文件中,修改第 7 行的音频文件名为你的测试音频文件名,然后运行以下命令:
python main_test.py
推理结果将保存在 data/output_viseme/[your_audio_file_name]/mayaparam_viseme.txt
文件中。
3. 应用案例和最佳实践
3.1 动画制作
VisemeNet_tensorflow 可以用于生成虚拟角色的口型动画。通过将音频文件输入到模型中,可以生成对应的 viseme 数据,进而驱动面部表情动画,使得虚拟角色的对话更加自然。
3.2 虚拟助手
在虚拟助手应用中,VisemeNet_tensorflow 可以用于生成虚拟助手的口型动画,使得虚拟助手在语音交互时更加生动和真实。
4. 典型生态项目
4.1 JALI 面部模型
VisemeNet_tensorflow 的输出 viseme 数据适用于 JALI 面部模型。JALI 是一个用于面部动画的工具,能够将 viseme 数据转换为面部表情动画。
4.2 TensorFlow
VisemeNet_tensorflow 基于 TensorFlow 框架开发,TensorFlow 是一个广泛使用的机器学习框架,提供了丰富的工具和库,支持深度学习模型的开发和部署。
通过以上步骤,你可以快速启动并使用 VisemeNet_tensorflow 项目,生成可视化口型数据,并应用于动画制作和虚拟助手等领域。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









