在EconML中使用CausalForestDML评估训练数据的平均处理效应
2025-06-16 06:14:24作者:凌朦慧Richard
概述
在因果机器学习领域,评估平均处理效应(ATE)及其置信区间是一个常见需求。EconML作为微软开发的因果推断Python库,提供了多种方法来计算ATE。本文将重点介绍使用CausalForestDML模型时,如何正确评估训练数据集上的ATE及其置信区间。
两种ATE计算方法
EconML的CausalForestDML提供了两种主要方法来计算ATE:
-
直接属性访问法:通过
est.ate_获取ATE点估计,通过est.ate_stderr_获取标准误差。这种方法在底层使用了双重稳健(Doubly Robust)估计器。 -
显式方法调用法:使用
est.ate(X=X, T0=T0, T1=T1)计算ATE,使用est.ate_interval(X=X, T0=T0, T1=T1)获取置信区间。
方法比较与选择建议
对于训练数据集上的ATE评估,推荐使用第一种方法(直接属性访问法),主要原因如下:
-
更紧致的置信区间:双重稳健估计器利用了模型的结构信息,通常能提供更精确的区间估计。
-
计算效率:直接访问预计算好的属性比重新计算更高效。
-
理论保证:双重稳健估计器具有更好的统计性质,特别是当模型设定可能存在错误时。
第二种方法(显式方法调用)更适合以下场景:
- 评估训练数据以外的样本
- 需要计算特定子群体的ATE
- 需要比较不同处理水平(T0和T1)下的效应
技术细节
双重稳健估计器之所以能提供更精确的结果,是因为它结合了两种估计方法:
- 基于结果模型的估计
- 基于倾向得分的估计
当其中任一模型设定正确时,双重稳健估计器就能保持一致性。此外,它通常具有更小的渐近方差。
实践建议
在实际应用中,建议:
- 对于训练数据本身的ATE评估,优先使用
ate_和ate_stderr_ - 当需要评估新数据或特定子群体时,使用
ate()方法 - 可以通过比较两种方法的结果来检查模型稳定性
- 注意检查置信区间的合理性,过大区间可能提示模型存在问题
总结
EconML提供了灵活的工具来评估因果效应,理解不同方法的特点和适用场景对于获得可靠结论至关重要。在训练数据评估场景下,双重稳健估计器通常是更优选择。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134