Python 因果推断手册教程
2024-09-13 08:16:53作者:凤尚柏Louis
项目介绍
Python 因果推断手册(Python Causality Handbook)是一个开源项目,旨在通过Python语言提供一个轻松但严谨的因果推断学习方法。该项目涵盖了影响估计和敏感性分析的核心概念,适合那些勇敢且真实的学习者。项目内容丰富,包含大量的Python代码示例和有趣的图解,帮助读者更好地理解和应用因果推断技术。
项目快速启动
1. 克隆项目
首先,克隆项目到本地:
git clone https://github.com/matheusfacure/python-causality-handbook.git
2. 安装依赖
进入项目目录并安装所需的Python依赖包:
cd python-causality-handbook
pip install -r requirements.txt
3. 运行示例代码
项目中包含多个Jupyter Notebook示例,可以通过以下命令启动Jupyter Notebook并运行示例代码:
jupyter notebook
在Jupyter Notebook界面中,打开任意一个.ipynb文件即可开始学习和运行代码。
应用案例和最佳实践
案例1:教育对收入的影响
在这个案例中,我们将使用因果推断技术来分析教育对个人收入的影响。通过模拟数据和Python代码,我们可以估计教育对收入的因果效应。
import pandas as pd
import numpy as np
from scipy.special import expit
import seaborn as sns
from matplotlib import pyplot as plt
# 模拟数据
np.random.seed(123)
n = 100
education = np.random.normal(10, 3, n).round()
income = np.random.normal(50000 + 10000 * education, 10000)
data = pd.DataFrame({'Education': education, 'Income': income})
# 绘制散点图
sns.scatterplot(x='Education', y='Income', data=data)
plt.title('Education vs Income')
plt.show()
案例2:药物对患者康复时间的影响
在这个案例中,我们将分析某种药物对患者康复时间的影响。通过因果推断技术,我们可以估计药物的因果效应,并评估其统计显著性。
# 模拟数据
np.random.seed(456)
n = 100
drug = np.random.binomial(1, 0.5, n)
recovery_time = np.random.normal(10 - 2 * drug, 2)
data = pd.DataFrame({'Drug': drug, 'Recovery_Time': recovery_time})
# 绘制箱线图
sns.boxplot(x='Drug', y='Recovery_Time', data=data)
plt.title('Drug Effect on Recovery Time')
plt.show()
典型生态项目
1. EconML
EconML是一个用于因果推断的Python库,特别适用于经济学和商业应用。它提供了多种因果推断模型和工具,帮助用户在复杂的数据环境中进行因果效应估计。
2. CausalML
CausalML是另一个专注于因果推断的Python库,提供了多种机器学习方法来估计因果效应。它特别适用于大规模数据集和复杂的因果关系分析。
3. DoWhy
DoWhy是一个用于因果推断的Python库,旨在简化因果推断的流程。它提供了从因果图构建到因果效应估计的一站式解决方案,适合初学者和高级用户。
通过这些生态项目,用户可以进一步扩展和应用Python因果推断手册中的技术,解决实际问题。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267
cinatrac++20实现的跨平台、header only、跨平台的高性能http库。C++00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.92 K
deepin linux kernel
C
22
6
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
React Native鸿蒙化仓库
C++
192
274
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8