Python 因果推断手册教程
2024-09-13 07:22:39作者:凤尚柏Louis
项目介绍
Python 因果推断手册(Python Causality Handbook)是一个开源项目,旨在通过Python语言提供一个轻松但严谨的因果推断学习方法。该项目涵盖了影响估计和敏感性分析的核心概念,适合那些勇敢且真实的学习者。项目内容丰富,包含大量的Python代码示例和有趣的图解,帮助读者更好地理解和应用因果推断技术。
项目快速启动
1. 克隆项目
首先,克隆项目到本地:
git clone https://github.com/matheusfacure/python-causality-handbook.git
2. 安装依赖
进入项目目录并安装所需的Python依赖包:
cd python-causality-handbook
pip install -r requirements.txt
3. 运行示例代码
项目中包含多个Jupyter Notebook示例,可以通过以下命令启动Jupyter Notebook并运行示例代码:
jupyter notebook
在Jupyter Notebook界面中,打开任意一个.ipynb文件即可开始学习和运行代码。
应用案例和最佳实践
案例1:教育对收入的影响
在这个案例中,我们将使用因果推断技术来分析教育对个人收入的影响。通过模拟数据和Python代码,我们可以估计教育对收入的因果效应。
import pandas as pd
import numpy as np
from scipy.special import expit
import seaborn as sns
from matplotlib import pyplot as plt
# 模拟数据
np.random.seed(123)
n = 100
education = np.random.normal(10, 3, n).round()
income = np.random.normal(50000 + 10000 * education, 10000)
data = pd.DataFrame({'Education': education, 'Income': income})
# 绘制散点图
sns.scatterplot(x='Education', y='Income', data=data)
plt.title('Education vs Income')
plt.show()
案例2:药物对患者康复时间的影响
在这个案例中,我们将分析某种药物对患者康复时间的影响。通过因果推断技术,我们可以估计药物的因果效应,并评估其统计显著性。
# 模拟数据
np.random.seed(456)
n = 100
drug = np.random.binomial(1, 0.5, n)
recovery_time = np.random.normal(10 - 2 * drug, 2)
data = pd.DataFrame({'Drug': drug, 'Recovery_Time': recovery_time})
# 绘制箱线图
sns.boxplot(x='Drug', y='Recovery_Time', data=data)
plt.title('Drug Effect on Recovery Time')
plt.show()
典型生态项目
1. EconML
EconML是一个用于因果推断的Python库,特别适用于经济学和商业应用。它提供了多种因果推断模型和工具,帮助用户在复杂的数据环境中进行因果效应估计。
2. CausalML
CausalML是另一个专注于因果推断的Python库,提供了多种机器学习方法来估计因果效应。它特别适用于大规模数据集和复杂的因果关系分析。
3. DoWhy
DoWhy是一个用于因果推断的Python库,旨在简化因果推断的流程。它提供了从因果图构建到因果效应估计的一站式解决方案,适合初学者和高级用户。
通过这些生态项目,用户可以进一步扩展和应用Python因果推断手册中的技术,解决实际问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210