Python 因果推断手册教程
2024-09-13 13:04:49作者:凤尚柏Louis
项目介绍
Python 因果推断手册(Python Causality Handbook)是一个开源项目,旨在通过Python语言提供一个轻松但严谨的因果推断学习方法。该项目涵盖了影响估计和敏感性分析的核心概念,适合那些勇敢且真实的学习者。项目内容丰富,包含大量的Python代码示例和有趣的图解,帮助读者更好地理解和应用因果推断技术。
项目快速启动
1. 克隆项目
首先,克隆项目到本地:
git clone https://github.com/matheusfacure/python-causality-handbook.git
2. 安装依赖
进入项目目录并安装所需的Python依赖包:
cd python-causality-handbook
pip install -r requirements.txt
3. 运行示例代码
项目中包含多个Jupyter Notebook示例,可以通过以下命令启动Jupyter Notebook并运行示例代码:
jupyter notebook
在Jupyter Notebook界面中,打开任意一个.ipynb文件即可开始学习和运行代码。
应用案例和最佳实践
案例1:教育对收入的影响
在这个案例中,我们将使用因果推断技术来分析教育对个人收入的影响。通过模拟数据和Python代码,我们可以估计教育对收入的因果效应。
import pandas as pd
import numpy as np
from scipy.special import expit
import seaborn as sns
from matplotlib import pyplot as plt
# 模拟数据
np.random.seed(123)
n = 100
education = np.random.normal(10, 3, n).round()
income = np.random.normal(50000 + 10000 * education, 10000)
data = pd.DataFrame({'Education': education, 'Income': income})
# 绘制散点图
sns.scatterplot(x='Education', y='Income', data=data)
plt.title('Education vs Income')
plt.show()
案例2:药物对患者康复时间的影响
在这个案例中,我们将分析某种药物对患者康复时间的影响。通过因果推断技术,我们可以估计药物的因果效应,并评估其统计显著性。
# 模拟数据
np.random.seed(456)
n = 100
drug = np.random.binomial(1, 0.5, n)
recovery_time = np.random.normal(10 - 2 * drug, 2)
data = pd.DataFrame({'Drug': drug, 'Recovery_Time': recovery_time})
# 绘制箱线图
sns.boxplot(x='Drug', y='Recovery_Time', data=data)
plt.title('Drug Effect on Recovery Time')
plt.show()
典型生态项目
1. EconML
EconML是一个用于因果推断的Python库,特别适用于经济学和商业应用。它提供了多种因果推断模型和工具,帮助用户在复杂的数据环境中进行因果效应估计。
2. CausalML
CausalML是另一个专注于因果推断的Python库,提供了多种机器学习方法来估计因果效应。它特别适用于大规模数据集和复杂的因果关系分析。
3. DoWhy
DoWhy是一个用于因果推断的Python库,旨在简化因果推断的流程。它提供了从因果图构建到因果效应估计的一站式解决方案,适合初学者和高级用户。
通过这些生态项目,用户可以进一步扩展和应用Python因果推断手册中的技术,解决实际问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178