Causal-Inference-and-Discovery-in-Python 项目教程
2024-09-14 14:26:45作者:龚格成
Causal-Inference-and-Discovery-in-Python
Causal Inference and Discovery in Python by Packt Publishing
1. 项目介绍
Causal-Inference-and-Discovery-in-Python 是由 Packt Publishing 出版的一本关于因果推断和发现的 Python 书籍的代码库。该项目旨在帮助读者理解和应用现代因果机器学习技术,涵盖了从基础概念到高级算法的全面内容。通过使用 DoWhy、EconML、PyTorch 等工具,读者可以掌握因果推断的核心概念,并将其应用于实际问题中。
2. 项目快速启动
环境准备
首先,确保你已经安装了 Python 3.9 或更高版本。然后,使用以下命令安装项目所需的环境:
conda env create -f causal_book_py39_cuda117.yml
克隆项目
使用以下命令克隆项目到本地:
git clone https://github.com/PacktPublishing/Causal-Inference-and-Discovery-in-Python.git
运行示例代码
进入项目目录并运行示例代码:
cd Causal-Inference-and-Discovery-in-Python
jupyter notebook
打开 Jupyter Notebook 后,选择 Chapter_01.ipynb
文件,按照教程逐步运行代码。
3. 应用案例和最佳实践
案例1:因果效应估计
在 Chapter_04.ipynb
中,你将学习如何使用 DoWhy 库进行因果效应估计。以下是一个简单的示例代码:
from dowhy import CausalModel
import dowhy.datasets
# 生成模拟数据
data = dowhy.datasets.linear_dataset(
beta=10,
num_common_causes=5,
num_instruments=2,
num_samples=10000,
treatment_is_binary=True)
# 定义因果模型
model = CausalModel(
data=data["df"],
treatment=data["treatment_name"],
outcome=data["outcome_name"],
common_causes=data["common_causes_names"])
# 识别因果效应
identified_estimand = model.identify_effect()
# 估计因果效应
estimate = model.estimate_effect(identified_estimand,
method_name="backdoor.linear_regression")
print(estimate)
案例2:因果发现
在 Chapter_07.ipynb
中,你将学习如何使用 gCastle 库进行因果发现。以下是一个简单的示例代码:
from castle.algorithms import PC
from castle.datasets import IIDSimulation
# 生成模拟数据
data = IIDSimulation(n_nodes=10, n_edges=20, n_samples=1000)
# 运行因果发现算法
pc = PC()
pc.learn(data.X)
# 输出因果图
pc.causal_matrix
4. 典型生态项目
DoWhy
DoWhy 是一个用于因果推断的 Python 库,提供了从因果识别到估计的完整流程。它支持多种因果推断方法,如后门调整、前门调整和工具变量法。
EconML
EconML 是一个专注于因果机器学习的 Python 库,特别适用于处理大规模数据和复杂因果关系。它提供了多种因果效应估计方法,如双重稳健估计和双重机器学习。
PyTorch
PyTorch 是一个广泛使用的深度学习框架,本书中使用它来实现一些高级因果模型,如因果 BERT。
通过这些工具和项目的结合,读者可以深入理解因果推断的原理,并将其应用于实际问题中。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5