Causal-Inference-and-Discovery-in-Python 项目教程
2024-09-14 06:46:06作者:龚格成
Causal-Inference-and-Discovery-in-Python
Causal Inference and Discovery in Python by Packt Publishing
1. 项目介绍
Causal-Inference-and-Discovery-in-Python 是由 Packt Publishing 出版的一本关于因果推断和发现的 Python 书籍的代码库。该项目旨在帮助读者理解和应用现代因果机器学习技术,涵盖了从基础概念到高级算法的全面内容。通过使用 DoWhy、EconML、PyTorch 等工具,读者可以掌握因果推断的核心概念,并将其应用于实际问题中。
2. 项目快速启动
环境准备
首先,确保你已经安装了 Python 3.9 或更高版本。然后,使用以下命令安装项目所需的环境:
conda env create -f causal_book_py39_cuda117.yml
克隆项目
使用以下命令克隆项目到本地:
git clone https://github.com/PacktPublishing/Causal-Inference-and-Discovery-in-Python.git
运行示例代码
进入项目目录并运行示例代码:
cd Causal-Inference-and-Discovery-in-Python
jupyter notebook
打开 Jupyter Notebook 后,选择 Chapter_01.ipynb 文件,按照教程逐步运行代码。
3. 应用案例和最佳实践
案例1:因果效应估计
在 Chapter_04.ipynb 中,你将学习如何使用 DoWhy 库进行因果效应估计。以下是一个简单的示例代码:
from dowhy import CausalModel
import dowhy.datasets
# 生成模拟数据
data = dowhy.datasets.linear_dataset(
beta=10,
num_common_causes=5,
num_instruments=2,
num_samples=10000,
treatment_is_binary=True)
# 定义因果模型
model = CausalModel(
data=data["df"],
treatment=data["treatment_name"],
outcome=data["outcome_name"],
common_causes=data["common_causes_names"])
# 识别因果效应
identified_estimand = model.identify_effect()
# 估计因果效应
estimate = model.estimate_effect(identified_estimand,
method_name="backdoor.linear_regression")
print(estimate)
案例2:因果发现
在 Chapter_07.ipynb 中,你将学习如何使用 gCastle 库进行因果发现。以下是一个简单的示例代码:
from castle.algorithms import PC
from castle.datasets import IIDSimulation
# 生成模拟数据
data = IIDSimulation(n_nodes=10, n_edges=20, n_samples=1000)
# 运行因果发现算法
pc = PC()
pc.learn(data.X)
# 输出因果图
pc.causal_matrix
4. 典型生态项目
DoWhy
DoWhy 是一个用于因果推断的 Python 库,提供了从因果识别到估计的完整流程。它支持多种因果推断方法,如后门调整、前门调整和工具变量法。
EconML
EconML 是一个专注于因果机器学习的 Python 库,特别适用于处理大规模数据和复杂因果关系。它提供了多种因果效应估计方法,如双重稳健估计和双重机器学习。
PyTorch
PyTorch 是一个广泛使用的深度学习框架,本书中使用它来实现一些高级因果模型,如因果 BERT。
通过这些工具和项目的结合,读者可以深入理解因果推断的原理,并将其应用于实际问题中。
Causal-Inference-and-Discovery-in-Python
Causal Inference and Discovery in Python by Packt Publishing
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
340
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
233
266
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
668
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
45
32