Causal-Inference-and-Discovery-in-Python 项目教程
2024-09-14 06:46:06作者:龚格成
Causal-Inference-and-Discovery-in-Python
Causal Inference and Discovery in Python by Packt Publishing
1. 项目介绍
Causal-Inference-and-Discovery-in-Python 是由 Packt Publishing 出版的一本关于因果推断和发现的 Python 书籍的代码库。该项目旨在帮助读者理解和应用现代因果机器学习技术,涵盖了从基础概念到高级算法的全面内容。通过使用 DoWhy、EconML、PyTorch 等工具,读者可以掌握因果推断的核心概念,并将其应用于实际问题中。
2. 项目快速启动
环境准备
首先,确保你已经安装了 Python 3.9 或更高版本。然后,使用以下命令安装项目所需的环境:
conda env create -f causal_book_py39_cuda117.yml
克隆项目
使用以下命令克隆项目到本地:
git clone https://github.com/PacktPublishing/Causal-Inference-and-Discovery-in-Python.git
运行示例代码
进入项目目录并运行示例代码:
cd Causal-Inference-and-Discovery-in-Python
jupyter notebook
打开 Jupyter Notebook 后,选择 Chapter_01.ipynb 文件,按照教程逐步运行代码。
3. 应用案例和最佳实践
案例1:因果效应估计
在 Chapter_04.ipynb 中,你将学习如何使用 DoWhy 库进行因果效应估计。以下是一个简单的示例代码:
from dowhy import CausalModel
import dowhy.datasets
# 生成模拟数据
data = dowhy.datasets.linear_dataset(
beta=10,
num_common_causes=5,
num_instruments=2,
num_samples=10000,
treatment_is_binary=True)
# 定义因果模型
model = CausalModel(
data=data["df"],
treatment=data["treatment_name"],
outcome=data["outcome_name"],
common_causes=data["common_causes_names"])
# 识别因果效应
identified_estimand = model.identify_effect()
# 估计因果效应
estimate = model.estimate_effect(identified_estimand,
method_name="backdoor.linear_regression")
print(estimate)
案例2:因果发现
在 Chapter_07.ipynb 中,你将学习如何使用 gCastle 库进行因果发现。以下是一个简单的示例代码:
from castle.algorithms import PC
from castle.datasets import IIDSimulation
# 生成模拟数据
data = IIDSimulation(n_nodes=10, n_edges=20, n_samples=1000)
# 运行因果发现算法
pc = PC()
pc.learn(data.X)
# 输出因果图
pc.causal_matrix
4. 典型生态项目
DoWhy
DoWhy 是一个用于因果推断的 Python 库,提供了从因果识别到估计的完整流程。它支持多种因果推断方法,如后门调整、前门调整和工具变量法。
EconML
EconML 是一个专注于因果机器学习的 Python 库,特别适用于处理大规模数据和复杂因果关系。它提供了多种因果效应估计方法,如双重稳健估计和双重机器学习。
PyTorch
PyTorch 是一个广泛使用的深度学习框架,本书中使用它来实现一些高级因果模型,如因果 BERT。
通过这些工具和项目的结合,读者可以深入理解因果推断的原理,并将其应用于实际问题中。
Causal-Inference-and-Discovery-in-Python
Causal Inference and Discovery in Python by Packt Publishing
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328