Causal-Inference-and-Discovery-in-Python 项目教程
2024-09-14 09:44:57作者:龚格成
Causal-Inference-and-Discovery-in-Python
Causal Inference and Discovery in Python by Packt Publishing
1. 项目介绍
Causal-Inference-and-Discovery-in-Python 是由 Packt Publishing 出版的一本关于因果推断和发现的 Python 书籍的代码库。该项目旨在帮助读者理解和应用现代因果机器学习技术,涵盖了从基础概念到高级算法的全面内容。通过使用 DoWhy、EconML、PyTorch 等工具,读者可以掌握因果推断的核心概念,并将其应用于实际问题中。
2. 项目快速启动
环境准备
首先,确保你已经安装了 Python 3.9 或更高版本。然后,使用以下命令安装项目所需的环境:
conda env create -f causal_book_py39_cuda117.yml
克隆项目
使用以下命令克隆项目到本地:
git clone https://github.com/PacktPublishing/Causal-Inference-and-Discovery-in-Python.git
运行示例代码
进入项目目录并运行示例代码:
cd Causal-Inference-and-Discovery-in-Python
jupyter notebook
打开 Jupyter Notebook 后,选择 Chapter_01.ipynb 文件,按照教程逐步运行代码。
3. 应用案例和最佳实践
案例1:因果效应估计
在 Chapter_04.ipynb 中,你将学习如何使用 DoWhy 库进行因果效应估计。以下是一个简单的示例代码:
from dowhy import CausalModel
import dowhy.datasets
# 生成模拟数据
data = dowhy.datasets.linear_dataset(
beta=10,
num_common_causes=5,
num_instruments=2,
num_samples=10000,
treatment_is_binary=True)
# 定义因果模型
model = CausalModel(
data=data["df"],
treatment=data["treatment_name"],
outcome=data["outcome_name"],
common_causes=data["common_causes_names"])
# 识别因果效应
identified_estimand = model.identify_effect()
# 估计因果效应
estimate = model.estimate_effect(identified_estimand,
method_name="backdoor.linear_regression")
print(estimate)
案例2:因果发现
在 Chapter_07.ipynb 中,你将学习如何使用 gCastle 库进行因果发现。以下是一个简单的示例代码:
from castle.algorithms import PC
from castle.datasets import IIDSimulation
# 生成模拟数据
data = IIDSimulation(n_nodes=10, n_edges=20, n_samples=1000)
# 运行因果发现算法
pc = PC()
pc.learn(data.X)
# 输出因果图
pc.causal_matrix
4. 典型生态项目
DoWhy
DoWhy 是一个用于因果推断的 Python 库,提供了从因果识别到估计的完整流程。它支持多种因果推断方法,如后门调整、前门调整和工具变量法。
EconML
EconML 是一个专注于因果机器学习的 Python 库,特别适用于处理大规模数据和复杂因果关系。它提供了多种因果效应估计方法,如双重稳健估计和双重机器学习。
PyTorch
PyTorch 是一个广泛使用的深度学习框架,本书中使用它来实现一些高级因果模型,如因果 BERT。
通过这些工具和项目的结合,读者可以深入理解因果推断的原理,并将其应用于实际问题中。
Causal-Inference-and-Discovery-in-Python
Causal Inference and Discovery in Python by Packt Publishing
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
186
201
暂无简介
Dart
625
141
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
242
315
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
381
3.52 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.11 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
127
857