HuggingFace Datasets加载大容量Parquet文件时的磁盘空间优化方案
2025-05-10 05:59:16作者:段琳惟
在使用HuggingFace Datasets库处理大规模数据集时,许多开发者会遇到一个常见问题:当加载压缩格式的Parquet文件时,磁盘空间消耗会显著增加。这种现象源于底层数据处理机制的技术特性,但通过合理的配置可以有效地优化存储使用。
问题现象与技术原理
当使用load_dataset函数加载Parquet格式数据集时,原始压缩数据会被解压为Arrow格式存储在磁盘缓存中。Parquet作为一种列式存储格式,其压缩率通常很高(原始40GB数据解压后可能达到720GB)。这种设计带来了两个关键特性:
- 性能优化:解压后的Arrow格式支持高效的随机访问操作,这对机器学习训练过程中的数据采样至关重要
- 空间代价:解压后的数据体积会显著增大,可能达到原始数据的10-20倍
解决方案与实践建议
对于存储资源有限的场景,HuggingFace提供了流式处理模式作为替代方案:
流式处理模式(Streaming Mode)
通过设置streaming=True参数,可以将数据集加载为IterableDataset对象。这种模式下:
- 数据保持压缩状态,按需流式读取
- 不会在磁盘上生成解压后的缓存文件
- 内存占用保持稳定,适合处理超大规模数据集
# 流式加载示例
ds = load_dataset("parquet",
data_dir="path/to/parquet",
streaming=True)
数据集分割策略
在流式模式下,传统的ReadInstruction分割方法可能不可用,可以改用以下替代方案:
- take/skip组合:先加载完整数据集,再通过
dataset.take(N)和dataset.skip(N)实现分割 - 预处理分割:在生成Parquet文件时就做好train/validation分割,分别存储
最佳实践建议
- 存储规划:处理大数据集前,确保磁盘有足够的空间容纳解压后的数据
- 混合策略:对小规模数据集使用常规加载,大规模数据使用流式处理
- 缓存管理:合理设置
cache_dir参数,将缓存文件存储在专用存储设备上 - 资源监控:实现磁盘空间监控机制,避免存储耗尽导致系统问题
通过理解这些技术原理和应用方案,开发者可以根据实际资源情况和性能需求,选择最适合的数据加载策略,在保证模型训练效率的同时优化存储资源使用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1