首页
/ DI-engine中SMAC环境训练结果评估方法解析

DI-engine中SMAC环境训练结果评估方法解析

2025-06-24 11:58:36作者:邬祺芯Juliet

背景介绍

在强化学习领域,评估算法性能是研究过程中至关重要的一环。当使用DI-engine框架在星际争霸多智能体挑战(SMAC)环境中训练多智能体算法时,准确计算战斗胜率是衡量算法表现的核心指标。本文将详细介绍在DI-engine项目中如何正确理解和计算SMAC环境下的战斗胜率。

胜率计算原理

在SMAC环境中,每次评估阶段(evaluation phase)会进行多场战斗测试。每场战斗的结果以布尔值形式记录:

  • 1表示胜利
  • 0表示失败

胜率的计算方法是统计所有评估场次中胜利场次的比例。例如,如果配置参数n_evaluator_episode=32,评估结果记录为:

[0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 
0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0]

则胜率为17/32≈0.53125(53.125%)。

实现细节

在DI-engine框架中,这一评估结果会显示在训练日志的eval_episode_return字段中。需要注意的是:

  1. 评估场次配置n_evaluator_episode参数决定了每次评估进行的战斗场次,场次越多,胜率统计越准确,但评估时间也会相应增加。

  2. 结果记录方式:虽然字段名为return,但在SMAC环境中它实际上记录的是每场战斗的胜负情况(0/1),而非传统的累计奖励值。

  3. 训练过程中的评估:框架会在训练过程中定期进行评估,因此可以在训练日志中观察到算法胜率随训练进度的变化趋势。

实际应用建议

  1. 合理设置评估场次:对于复杂场景,建议设置较大的n_evaluator_episode值(如32或更高),以获得更稳定的胜率评估。

  2. 结果解读:不应仅关注单次评估结果,而应观察胜率随训练迭代的整体变化趋势。

  3. 对比实验:当比较不同算法性能时,应确保使用相同的评估场次配置,以保证比较的公平性。

  4. 自定义评估:如需更详细的评估指标,可以扩展评估函数,记录如剩余单位数量、战斗时长等额外信息。

总结

理解DI-engine框架中SMAC环境胜率的计算方式对于正确评估算法性能至关重要。通过合理配置评估参数和正确解读评估结果,研究人员可以更准确地衡量多智能体强化学习算法在复杂战斗场景中的表现。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K
kernelkernel
deepin linux kernel
C
22
6
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
518
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0