LLMs-from-scratch项目中的文本分词技术解析
2025-05-01 10:31:19作者:韦蓉瑛
在自然语言处理领域,文本分词是一个基础而重要的预处理步骤。本文将以LLMs-from-scratch项目中的文本分词实现为例,深入探讨正则表达式在文本处理中的应用技巧。
基础分词方法
项目最初展示了一个简单的分词方法,使用正则表达式将文本按标点符号和空白字符分割:
import re
text = "Hello, world. This, is a test."
result = re.split(r'([,.]|\s)', text)
这种方法能够将文本分割为单词和标点符号,但会产生一些空白项,需要通过后续处理过滤掉。
改进的分词技术
为了处理更复杂的文本情况,项目进一步展示了增强版的正则表达式:
text = "Hello, world. Is this-- a test?"
result = re.split(r'([,.?_!"()\']|--|\s)', text)
result = [item.strip() for item in result if item.strip()]
这个版本能够处理更多类型的标点符号,包括连字符(--),并通过列表推导式清理结果中的空白项。
高级分词技巧
在讨论中,社区贡献了更强大的分词方案,使用regex库(而非标准re库)和更复杂的正则表达式:
import regex
text = "Hello, world. Is this-- a test?"
result = regex.split(r'(--|[[:punct:]]|\s)', text)
这种方法利用[[:punct:]]字符类匹配所有标点符号,使表达式更加简洁。更进一步,还有保留单词中连字符和撇号的方案:
preprocessed = regex.split(r"([[:punct:]](?<![-'])|--|(?<=\s)'|'(?=\s)|\s+)", raw_text)
这个复杂的正则表达式使用了负向回溯断言((?<![-']))等高级特性,确保不分割像"don't"这样的缩写词中的撇号。
技术选型考量
在实际应用中,选择分词方法需要考虑:
- 简单性:基础方法易于理解和实现
- 全面性:高级方法能处理更多边缘情况
- 性能:复杂正则表达式可能影响处理速度
- 特定需求:如是否需要保留特定字符
值得注意的是,在现代大型语言模型(LLM)中,通常会使用更先进的子词分词技术(如Byte Pair Encoding),但理解这些基础分词技术对于深入掌握NLP预处理流程仍然非常重要。
总结
文本分词作为NLP预处理的关键步骤,其实现方式多种多样。从简单的正则表达式到复杂的模式匹配,开发者需要根据具体应用场景选择合适的方法。LLMs-from-scratch项目通过逐步展示不同复杂度的实现,为学习者提供了很好的技术演进视角。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
25