LLMs-from-scratch项目中的文本分词技术解析
2025-05-01 11:57:28作者:韦蓉瑛
在自然语言处理领域,文本分词是一个基础而重要的预处理步骤。本文将以LLMs-from-scratch项目中的文本分词实现为例,深入探讨正则表达式在文本处理中的应用技巧。
基础分词方法
项目最初展示了一个简单的分词方法,使用正则表达式将文本按标点符号和空白字符分割:
import re
text = "Hello, world. This, is a test."
result = re.split(r'([,.]|\s)', text)
这种方法能够将文本分割为单词和标点符号,但会产生一些空白项,需要通过后续处理过滤掉。
改进的分词技术
为了处理更复杂的文本情况,项目进一步展示了增强版的正则表达式:
text = "Hello, world. Is this-- a test?"
result = re.split(r'([,.?_!"()\']|--|\s)', text)
result = [item.strip() for item in result if item.strip()]
这个版本能够处理更多类型的标点符号,包括连字符(--),并通过列表推导式清理结果中的空白项。
高级分词技巧
在讨论中,社区贡献了更强大的分词方案,使用regex库(而非标准re库)和更复杂的正则表达式:
import regex
text = "Hello, world. Is this-- a test?"
result = regex.split(r'(--|[[:punct:]]|\s)', text)
这种方法利用[[:punct:]]
字符类匹配所有标点符号,使表达式更加简洁。更进一步,还有保留单词中连字符和撇号的方案:
preprocessed = regex.split(r"([[:punct:]](?<![-'])|--|(?<=\s)'|'(?=\s)|\s+)", raw_text)
这个复杂的正则表达式使用了负向回溯断言((?<![-'])
)等高级特性,确保不分割像"don't"这样的缩写词中的撇号。
技术选型考量
在实际应用中,选择分词方法需要考虑:
- 简单性:基础方法易于理解和实现
- 全面性:高级方法能处理更多边缘情况
- 性能:复杂正则表达式可能影响处理速度
- 特定需求:如是否需要保留特定字符
值得注意的是,在现代大型语言模型(LLM)中,通常会使用更先进的子词分词技术(如Byte Pair Encoding),但理解这些基础分词技术对于深入掌握NLP预处理流程仍然非常重要。
总结
文本分词作为NLP预处理的关键步骤,其实现方式多种多样。从简单的正则表达式到复杂的模式匹配,开发者需要根据具体应用场景选择合适的方法。LLMs-from-scratch项目通过逐步展示不同复杂度的实现,为学习者提供了很好的技术演进视角。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133