推荐项目:Region Normalization for Image Inpainting
2024-05-31 20:20:41作者:范垣楠Rhoda
1、项目介绍
Region Normalization for Image Inpainting 是一个由USTC的Yutao团队开发的开源项目,其目的是通过引入区域归一化(RN)来改善图像修复的质量。该项目基于PyTorch框架实现,并在AAAI 2020会议上发表的相关论文中详细阐述了这一创新方法。
2、项目技术分析
该项目的核心是RN层,它是一种针对图像修复任务设计的空间区域归一化策略。与传统的批量归一化(BN)和实例归一化(IN)不同,RN考虑了每个局部区域的信息,提高了修复结果的保真度和一致性。RN可以以BN风格或IN风格进行应用,每种风格都有其优点和局限性:BN风格倾向于更高的PSNR,但可能导致区域模糊;而IN风格虽然减少了失真,但在模型表达能力有限时可能产生空间不一致性。
3、项目及技术应用场景
Region Normalization 技术主要应用于图像修复领域,特别是在处理损坏、遮挡或丢失的图像部分时。它可以用于照片恢复、视频帧修复以及艺术作品的复原等场景。由于其出色的性能,这项技术也可以为其他计算机视觉任务如图像去噪、超分辨率和语义分割提供新的思考方向。
4、项目特点
- 区域归一化: 创新性地提出了区域归一化的概念,提高了图像修复的准确性和自然性。
- 兼容性: 支持Python 3.x和PyTorch 0.4以上版本,易于集成到现有的深度学习环境中。
- 优化训练: 提供了训练和评估脚本,使得模型训练和效果测试简单易行。
- 可调整参数: 主要参数可在
main.py文件中调整,方便研究者探索最佳配置。 - 预训练模型: 包含预训练模型,基于Places2数据集和不规则掩模数据集,但建议针对特定数据集重新训练RN。
如果你在图像修复或相关领域工作,这个项目绝对值得尝试。不仅如此,它的代码结构清晰,对于理解区域归一化的工作原理也是一个很好的学习资源。为了尊重作者的辛勤工作,请在使用项目时引用相关的学术论文。
@inproceedings{yu2020region,
title={Region Normalization for Image Inpainting.},
author={Yu, Tao and Guo, Zongyu and Jin, Xin and Wu, Shilin and Chen, Zhibo and Li, Weiping and Zhang, Zhizheng and Liu, Sen},
booktitle={AAAI},
pages={12733--12740},
year={2020}
}
现在就加入社区,发掘Region Normalization的潜力吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
436
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
701
379
Ascend Extension for PyTorch
Python
246
283
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
273
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
267
124
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871