推荐项目:Region Normalization for Image Inpainting
2024-05-31 20:20:41作者:范垣楠Rhoda
1、项目介绍
Region Normalization for Image Inpainting 是一个由USTC的Yutao团队开发的开源项目,其目的是通过引入区域归一化(RN)来改善图像修复的质量。该项目基于PyTorch框架实现,并在AAAI 2020会议上发表的相关论文中详细阐述了这一创新方法。
2、项目技术分析
该项目的核心是RN层,它是一种针对图像修复任务设计的空间区域归一化策略。与传统的批量归一化(BN)和实例归一化(IN)不同,RN考虑了每个局部区域的信息,提高了修复结果的保真度和一致性。RN可以以BN风格或IN风格进行应用,每种风格都有其优点和局限性:BN风格倾向于更高的PSNR,但可能导致区域模糊;而IN风格虽然减少了失真,但在模型表达能力有限时可能产生空间不一致性。
3、项目及技术应用场景
Region Normalization 技术主要应用于图像修复领域,特别是在处理损坏、遮挡或丢失的图像部分时。它可以用于照片恢复、视频帧修复以及艺术作品的复原等场景。由于其出色的性能,这项技术也可以为其他计算机视觉任务如图像去噪、超分辨率和语义分割提供新的思考方向。
4、项目特点
- 区域归一化: 创新性地提出了区域归一化的概念,提高了图像修复的准确性和自然性。
- 兼容性: 支持Python 3.x和PyTorch 0.4以上版本,易于集成到现有的深度学习环境中。
- 优化训练: 提供了训练和评估脚本,使得模型训练和效果测试简单易行。
- 可调整参数: 主要参数可在
main.py文件中调整,方便研究者探索最佳配置。 - 预训练模型: 包含预训练模型,基于Places2数据集和不规则掩模数据集,但建议针对特定数据集重新训练RN。
如果你在图像修复或相关领域工作,这个项目绝对值得尝试。不仅如此,它的代码结构清晰,对于理解区域归一化的工作原理也是一个很好的学习资源。为了尊重作者的辛勤工作,请在使用项目时引用相关的学术论文。
@inproceedings{yu2020region,
title={Region Normalization for Image Inpainting.},
author={Yu, Tao and Guo, Zongyu and Jin, Xin and Wu, Shilin and Chen, Zhibo and Li, Weiping and Zhang, Zhizheng and Liu, Sen},
booktitle={AAAI},
pages={12733--12740},
year={2020}
}
现在就加入社区,发掘Region Normalization的潜力吧!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217