LeagueAI 项目教程
2024-09-15 23:01:28作者:平淮齐Percy
1. 项目目录结构及介绍
LeagueAI 项目的目录结构如下:
LeagueAI/
├── cfg/
├── generate_dataset/
├── report/
├── test_map/
├── .gitignore
├── LICENSE
├── LeagueAI_helper.py
├── LeagueAI_mAP.py
├── LeagueAI_minimal_example.py
├── LeagueAI_video_evaluation.py
├── README.md
├── pallete/
├── plot_loss.py
├── utils.py
├── video_detection.py
└── yolov3_detector.py
目录介绍:
- cfg/:包含项目的配置文件。
- generate_dataset/:用于生成训练数据的脚本和工具。
- report/:包含项目的报告和文档。
- test_map/:用于测试地图相关功能的脚本。
- .gitignore:Git 忽略文件列表。
- LICENSE:项目的开源许可证。
- LeagueAI_helper.py:辅助功能的 Python 脚本。
- LeagueAI_mAP.py:用于计算平均精度(mAP)的 Python 脚本。
- LeagueAI_minimal_example.py:最小示例脚本,展示项目的基本使用。
- LeagueAI_video_evaluation.py:用于视频评估的 Python 脚本。
- README.md:项目的介绍和使用说明。
- pallete/:包含调色板相关文件。
- plot_loss.py:用于绘制损失函数的 Python 脚本。
- utils.py:通用工具函数库。
- video_detection.py:用于视频检测的 Python 脚本。
- yolov3_detector.py:基于 YOLOv3 的对象检测器。
2. 项目启动文件介绍
项目的启动文件是 LeagueAI_minimal_example.py
。该文件展示了如何使用 LeagueAI 项目进行基本的游戏对象检测。
启动文件内容概述:
- 导入必要的库:导入 OpenCV、PyTorch 等必要的库。
- 加载模型:加载预训练的 YOLOv3 模型。
- 图像处理:读取游戏截图并进行预处理。
- 对象检测:使用 YOLOv3 模型进行对象检测,并绘制检测结果。
- 显示结果:将检测结果显示在屏幕上。
使用方法:
python LeagueAI_minimal_example.py
3. 项目配置文件介绍
项目的配置文件位于 cfg/
目录下。配置文件主要用于定义模型的参数、训练数据的路径、检测阈值等。
配置文件内容概述:
- 模型参数:定义 YOLOv3 模型的层数、卷积核大小等。
- 数据路径:指定训练数据和测试数据的路径。
- 检测阈值:设置对象检测的置信度阈值。
- 其他参数:包括学习率、批量大小等训练参数。
配置文件示例:
model:
layers: 53
filters: [32, 64, 128, 256, 512]
data:
train_path: "generate_dataset/train"
test_path: "generate_dataset/test"
detection:
confidence_threshold: 0.5
training:
learning_rate: 0.001
batch_size: 16
使用方法:
在启动文件中加载配置文件:
import yaml
with open('cfg/config.yaml', 'r') as file:
config = yaml.safe_load(file)
# 使用配置文件中的参数
model_layers = config['model']['layers']
train_path = config['data']['train_path']
通过以上步骤,您可以了解 LeagueAI 项目的目录结构、启动文件和配置文件的使用方法。希望这篇教程对您有所帮助!
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0118DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
1 freeCodeCamp钢琴设计项目中的CSS盒模型设置优化2 freeCodeCamp课程中英语学习模块的提示信息优化建议3 freeCodeCamp项目中移除未使用的CSS样式优化指南4 freeCodeCamp正则表达式教学视频中的语法修正5 freeCodeCamp课程中事件传单页面的CSS选择器问题解析6 freeCodeCamp项目中从ts-node迁移到tsx的技术决策分析7 freeCodeCamp正则表达式课程中反向引用示例代码修正分析8 freeCodeCamp计算机基础课程中主板与CPU概念的精确表述 9 freeCodeCamp猫照片应用HTML教程中的元素嵌套优化建议10 freeCodeCamp JavaScript课程中十进制转二进制转换器的潜在问题分析
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 Python案例资源下载 - 从入门到精通的完整项目代码合集 Visual Studio 2015企业版中文版下载安装完全指南 - 专业开发工具必备资源
项目优选
收起

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
270

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
909
541

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
341
1.21 K

openGauss kernel ~ openGauss is an open source relational database management system
C++
142
188

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
377
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
63
58

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.1 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
87
4