Auto-AVSR 项目使用教程
2024-09-19 02:40:18作者:魏侃纯Zoe
1. 项目介绍
Auto-AVSR 是一个开源的语音识别框架,主要专注于视觉语音(唇读)。该项目旨在通过端到端的训练,提供最先进的模型,并在音频-视觉语音基准测试中实现可重复性。通过使用 Auto-AVSR,您可以在 LRS3 数据集上实现 20.3% 的视觉语音识别(VSR)和 1.0% 的音频语音识别(ASR)的词错误率(WER)。
2. 项目快速启动
2.1 环境设置
首先,设置 Python 环境并激活:
conda create -y -n auto_avsr python=3.8
conda activate auto_avsr
2.2 克隆项目
克隆 Auto-AVSR 项目到本地:
git clone https://github.com/mpc001/auto_avsr.git
cd auto_avsr
2.3 安装依赖
安装 fairseq 和其他必要的包:
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./
cd ..
pip install torch torchvision torchaudio
pip install pytorch-lightning==1.5.10
pip install sentencepiece
pip install av
pip install hydra-core --upgrade
2.4 准备数据集
根据 preparation
文件夹中的说明准备数据集。
2.5 训练模型
使用以下命令开始训练:
python train.py exp_dir=[exp_dir] \
exp_name=[exp_name] \
data.modality=[modality] \
data.dataset.root_dir=[root_dir] \
data.dataset.train_file=[train_file] \
trainer.num_nodes=[num_nodes]
2.6 测试模型
使用以下命令进行模型测试:
python eval.py data.modality=[modality] \
data.dataset.root_dir=[root_dir] \
data.dataset.test_file=[test_file] \
pretrained_model_path=[pretrained_model_path]
3. 应用案例和最佳实践
3.1 应用案例
Auto-AVSR 可以应用于多种场景,包括但不限于:
- 视频会议系统:通过唇读技术提高在嘈杂环境中的语音识别准确性。
- 语音助手:结合音频和视觉信息,提高语音助手的响应准确性。
- 教育领域:用于自动生成字幕,帮助听力障碍者理解视频内容。
3.2 最佳实践
- 数据预处理:确保数据集的预处理步骤严格按照项目文档进行,以保证训练效果。
- 超参数调整:根据具体应用场景调整训练参数,如学习率、批量大小等。
- 模型评估:定期评估模型性能,确保其在实际应用中的表现符合预期。
4. 典型生态项目
- ESPnet:一个端到端的语音处理工具包,支持多种语音识别任务。
- Fairseq:Facebook AI Research 开发的一个序列到序列模型工具包,支持多种自然语言处理任务。
- PyTorch Lightning:一个轻量级的 PyTorch 封装,简化了深度学习模型的训练和部署。
通过结合这些生态项目,可以进一步扩展 Auto-AVSR 的功能和应用场景。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp博客页面工作坊中的断言方法优化建议7 freeCodeCamp论坛排行榜项目中的错误日志规范要求8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp音乐播放器项目中的函数调用问题解析10 freeCodeCamp课程页面空白问题的技术分析与解决方案
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
237
2.36 K

仓颉编程语言运行时与标准库。
Cangjie
122
95

暂无简介
Dart
538
117

仓颉编译器源码及 cjdb 调试工具。
C++
114
83

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
77
109

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
995
588

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
568
113

LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
25