Auto-AVSR 项目使用教程
2024-09-19 18:50:01作者:魏侃纯Zoe
1. 项目介绍
Auto-AVSR 是一个开源的语音识别框架,主要专注于视觉语音(唇读)。该项目旨在通过端到端的训练,提供最先进的模型,并在音频-视觉语音基准测试中实现可重复性。通过使用 Auto-AVSR,您可以在 LRS3 数据集上实现 20.3% 的视觉语音识别(VSR)和 1.0% 的音频语音识别(ASR)的词错误率(WER)。
2. 项目快速启动
2.1 环境设置
首先,设置 Python 环境并激活:
conda create -y -n auto_avsr python=3.8
conda activate auto_avsr
2.2 克隆项目
克隆 Auto-AVSR 项目到本地:
git clone https://github.com/mpc001/auto_avsr.git
cd auto_avsr
2.3 安装依赖
安装 fairseq 和其他必要的包:
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./
cd ..
pip install torch torchvision torchaudio
pip install pytorch-lightning==1.5.10
pip install sentencepiece
pip install av
pip install hydra-core --upgrade
2.4 准备数据集
根据 preparation 文件夹中的说明准备数据集。
2.5 训练模型
使用以下命令开始训练:
python train.py exp_dir=[exp_dir] \
exp_name=[exp_name] \
data.modality=[modality] \
data.dataset.root_dir=[root_dir] \
data.dataset.train_file=[train_file] \
trainer.num_nodes=[num_nodes]
2.6 测试模型
使用以下命令进行模型测试:
python eval.py data.modality=[modality] \
data.dataset.root_dir=[root_dir] \
data.dataset.test_file=[test_file] \
pretrained_model_path=[pretrained_model_path]
3. 应用案例和最佳实践
3.1 应用案例
Auto-AVSR 可以应用于多种场景,包括但不限于:
- 视频会议系统:通过唇读技术提高在嘈杂环境中的语音识别准确性。
- 语音助手:结合音频和视觉信息,提高语音助手的响应准确性。
- 教育领域:用于自动生成字幕,帮助听力障碍者理解视频内容。
3.2 最佳实践
- 数据预处理:确保数据集的预处理步骤严格按照项目文档进行,以保证训练效果。
- 超参数调整:根据具体应用场景调整训练参数,如学习率、批量大小等。
- 模型评估:定期评估模型性能,确保其在实际应用中的表现符合预期。
4. 典型生态项目
- ESPnet:一个端到端的语音处理工具包,支持多种语音识别任务。
- Fairseq:Facebook AI Research 开发的一个序列到序列模型工具包,支持多种自然语言处理任务。
- PyTorch Lightning:一个轻量级的 PyTorch 封装,简化了深度学习模型的训练和部署。
通过结合这些生态项目,可以进一步扩展 Auto-AVSR 的功能和应用场景。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
140
170
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
731
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
198
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460