Auto-AVSR 项目使用教程
2024-09-19 19:24:15作者:魏侃纯Zoe
1. 项目介绍
Auto-AVSR 是一个开源的语音识别框架,主要专注于视觉语音(唇读)。该项目旨在通过端到端的训练,提供最先进的模型,并在音频-视觉语音基准测试中实现可重复性。通过使用 Auto-AVSR,您可以在 LRS3 数据集上实现 20.3% 的视觉语音识别(VSR)和 1.0% 的音频语音识别(ASR)的词错误率(WER)。
2. 项目快速启动
2.1 环境设置
首先,设置 Python 环境并激活:
conda create -y -n auto_avsr python=3.8
conda activate auto_avsr
2.2 克隆项目
克隆 Auto-AVSR 项目到本地:
git clone https://github.com/mpc001/auto_avsr.git
cd auto_avsr
2.3 安装依赖
安装 fairseq 和其他必要的包:
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./
cd ..
pip install torch torchvision torchaudio
pip install pytorch-lightning==1.5.10
pip install sentencepiece
pip install av
pip install hydra-core --upgrade
2.4 准备数据集
根据 preparation 文件夹中的说明准备数据集。
2.5 训练模型
使用以下命令开始训练:
python train.py exp_dir=[exp_dir] \
exp_name=[exp_name] \
data.modality=[modality] \
data.dataset.root_dir=[root_dir] \
data.dataset.train_file=[train_file] \
trainer.num_nodes=[num_nodes]
2.6 测试模型
使用以下命令进行模型测试:
python eval.py data.modality=[modality] \
data.dataset.root_dir=[root_dir] \
data.dataset.test_file=[test_file] \
pretrained_model_path=[pretrained_model_path]
3. 应用案例和最佳实践
3.1 应用案例
Auto-AVSR 可以应用于多种场景,包括但不限于:
- 视频会议系统:通过唇读技术提高在嘈杂环境中的语音识别准确性。
- 语音助手:结合音频和视觉信息,提高语音助手的响应准确性。
- 教育领域:用于自动生成字幕,帮助听力障碍者理解视频内容。
3.2 最佳实践
- 数据预处理:确保数据集的预处理步骤严格按照项目文档进行,以保证训练效果。
- 超参数调整:根据具体应用场景调整训练参数,如学习率、批量大小等。
- 模型评估:定期评估模型性能,确保其在实际应用中的表现符合预期。
4. 典型生态项目
- ESPnet:一个端到端的语音处理工具包,支持多种语音识别任务。
- Fairseq:Facebook AI Research 开发的一个序列到序列模型工具包,支持多种自然语言处理任务。
- PyTorch Lightning:一个轻量级的 PyTorch 封装,简化了深度学习模型的训练和部署。
通过结合这些生态项目,可以进一步扩展 Auto-AVSR 的功能和应用场景。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660