推荐开源项目:SCCL - 支持对比学习的聚类框架
2024-05-23 10:17:38作者:秋泉律Samson
在自然语言处理领域中,无监督聚类是一项基础且重要的任务,旨在发现数据的语义类别,而无需人工标注。然而,如何在表示空间中实现类别之间的良好分离,是此类方法面临的一大挑战。为此,我们向您推荐一个创新的开源项目——SCCL(Supporting Clustering with Contrastive Learning)。该项目由Zhang等人在NAACL 2021会议上提出,并已发布源代码供研究者和开发者使用。
项目介绍
SCCL是一个基于对比学习的聚类框架,它通过结合自底向上的实例区分与自顶向下的聚类策略,有效提升了不同类别间的距离,从而提高了聚类效果。该框架在多个基准短文本聚类任务上展示了显著的性能提升,对于Accuracy和Normalized Mutual Information(NMI)指标均有3%-11%和4%-15%的提高。
项目技术分析
SCCL的核心在于其创新性地利用了对比学习来促进类别之间的分离。通过虚拟或显式的数据增强,模型能更好地识别实例间的差异并进行有效的分类。对于没有额外数据增广的情况,SCCL还提供了"虚拟增强"模式,仅依赖原始数据就能实现对比学习的优势。
应用场景
SCCL适用于各类需要无监督文本聚类的场景,包括但不限于:
- 短文本数据分析,如社交媒体帖子、评论、搜索查询等。
- 智能信息检索系统,用于优化相似内容的分组。
- 自然语言理解的研究,以探索和定义文本的潜在结构。
项目特点
- 创新性: 结合对比学习和聚类,突破传统方法的局限。
- 高效性: 实现了对数据增广的灵活处理,无论是否有实际的增广数据。
- 易用性: 提供清晰的代码结构和说明文档,方便研究人员快速上手。
- 可扩展性: 可适应不同的预训练模型和数据集,有广泛的适用性。
- 出色的效果: 在多个公开基准上超越当前最佳结果。
为了使用SCCL,只需按照提供的main.py
脚本设置相应参数,即可开始训练。项目已声明依赖库版本,确保了复现实验的一致性。
引用该项目,请按照以下Bibtex条目:
@inproceedings{zhang-etal-2021-supporting,
title = "支持对比学习的聚类",
author = "张,德娇 and
纳,丰 and
魏,小凯 and
李,尚文 and
朱,恒辉 and
麦基昂,凯瑟琳 and
南拉皮提,拉姆什 and
阿诺德,安德鲁·O. and
豪,冰",
booktitle = "北美计算语言学协会2021年会论文集:人类语言技术",
month = jun,
year = "2021",
address = "在线",
publisher = "计算语言学协会",
url = "https://aclanthology.org/2021.naacl-main.427",
doi = "10.18653/v1/2021.naacl-main.427",
pages = "5419--5430",
abstract = "无监督聚类旨在根据表示空间中的某种距离发现数据的语义类别。然而,在学习过程初期,不同的类别往往在表示空间中相互重叠,这对基于距离的聚类造成了重大挑战。为此,我们提出了支持对比学习的聚类(SCCL)框架,利用对比学习来促进更好的分离。我们在短文本聚类评估中展示了SCCL的性能,显示在大多数基准数据集上相比之前的方法有了3{\%}-11{\%}的Accuracy提升和4{\%}-15{\%}的NMI提升。此外,我们的定量分析证明,SCCL在使用真实类别标签评估时,擅长利用实例辨别和聚类的优点来改善类别内的和类别间距离。",
}
总结来说,SCCL为解决无监督文本聚类问题提供了一种新颖而强大的工具,无论是研究还是实际应用,都值得尝试。立即加入这个开源社区,共享对比学习带来的聚类新体验吧!
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193