推荐文章:利用对比学习增强聚类——SCCL框架
2024-05-23 15:15:50作者:龚格成
在自然语言处理领域,无监督的文本聚类是一个极具挑战性的问题。如何在没有标签的情况下,将数据自动归类到有意义的类别中呢?这里我们向您推荐一个创新性的开源项目——SCCL(Supporting Clustering with Contrastive Learning),这个项目源自2021年NAACL大会的一篇论文,并已经在多个短文本聚类基准数据集上取得了显著的性能提升。
1、项目介绍
SCCL是一个基于PyTorch的框架,旨在通过对比学习来改善聚类过程中的类别分离效果。它结合了自下而上的实例鉴别和自上而下的聚类策略,以优化内在类别间的距离。项目提供了两种模式:显式增强和虚拟增强,分别利用实际的数据对或模型生成的表示来实现对比学习的目标。
2、项目技术分析
SCCL的核心是利用对比学习来辅助聚类。在这个过程中,每个数据点都与它的增强版本进行比较,以促进同类内部的一致性和异类之间的差异性。通过调整温度参数、学习率和η值,SCCL可以灵活地平衡聚类质量和训练稳定性。此外,它支持预训练的Sentence Transformers模型,如DistilBERT,用于获取文本的高质量表示。
3、项目及技术应用场景
SCCL特别适合于短文本聚类任务,例如社交媒体帖子的分类、搜索引擎的查询分组等。在这些场景中,由于文本长度有限,传统的基于词频或TF-IDF的方法往往表现不佳。SCCL则可以通过深度学习捕捉语义信息,即使在少量数据的情况下也能提供准确的聚类结果。
4、项目特点
- 高性能:SCCL在多个标准数据集上显著提高了聚类准确性和归一化互信息。
- 灵活性:支持显式和虚拟两种增强方式,适应不同数据和计算资源条件。
- 易用性:依赖库清晰明确,代码结构简洁,易于理解和复用。
- 预训练集成:无缝对接Sentence Transformers,利用预训练模型快速提取有效文本特征。
要开始使用SCCL,只需按照readme文档提供的步骤下载数据,配置环境,然后运行相应的Python脚本即可。
如果你想在你的无监督聚类项目中尝试最新的技术和方法,SCCL绝对值得你关注。让我们一起探索对比学习在聚类任务中的无限可能!
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
1