AWS Deep Learning Containers发布TensorFlow ARM64推理镜像v1.2版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预构建的深度学习容器镜像,旨在简化机器学习工作负载的部署过程。这些容器镜像经过优化,包含了流行的深度学习框架及其依赖项,用户可以直接使用而无需自行配置复杂的运行环境。
近日,AWS DLC项目发布了针对TensorFlow框架的ARM64架构推理镜像新版本v1.2。该版本基于TensorFlow 2.18.0构建,专门为ARM64处理器架构优化,适用于在Amazon SageMaker等服务上进行模型推理任务。
镜像技术细节
本次发布的TensorFlow推理镜像具有以下主要技术特性:
-
基础环境配置:
- 基于Ubuntu 20.04操作系统
- 使用Python 3.10作为默认Python环境
- 专门针对CPU推理场景优化
-
核心组件版本:
- TensorFlow Serving API 2.18.0
- Protobuf 4.25.6
- Cython 0.29.37
- AWS CLI工具集(boto3 1.36.18、botocore 1.36.18等)
-
系统依赖:
- 包含了必要的系统库如libgcc-9-dev和libstdc++-9-dev
- 预装了开发工具如Emacs编辑器
适用场景
该ARM64架构的TensorFlow推理镜像特别适合以下应用场景:
-
基于ARM处理器的云端推理:随着AWS Graviton等ARM架构处理器的普及,使用专为ARM优化的容器镜像可以获得更好的性价比。
-
SageMaker服务集成:镜像经过专门配置,可以无缝部署到Amazon SageMaker服务中,简化模型部署流程。
-
轻量级推理服务:CPU优化的版本适合对成本敏感且对延迟要求不苛刻的推理场景。
版本管理与使用建议
AWS DLC采用清晰的版本标签策略,用户可以根据需要选择特定版本:
- 长期支持标签(如2.18-cpu)指向该系列的最新稳定版本
- 精确版本标签(如2.18.0-cpu-py310)锁定特定构建版本
- SageMaker专用标签(如ubuntu20.04-sagemaker)包含针对SageMaker的特殊优化
对于生产环境,建议使用精确版本标签以确保环境一致性。开发阶段可以使用长期支持标签方便获取最新更新。
总结
AWS Deep Learning Containers项目持续为机器学习从业者提供高质量的预构建环境。这次发布的TensorFlow ARM64推理镜像v1.2版本,体现了AWS对多样化硬件架构的支持和对推理场景的专门优化。用户可以直接使用这些镜像,省去环境配置的麻烦,专注于模型开发和业务逻辑实现。
随着ARM架构在云计算领域的普及,这类专门优化的容器镜像将帮助用户更好地利用硬件特性,获得更高的性价比。对于使用Amazon SageMaker服务的用户,这些预优化的容器更是简化了从开发到部署的全流程。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00