AWS Deep Learning Containers发布TensorFlow ARM64推理镜像v1.2版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预构建的深度学习容器镜像,旨在简化机器学习工作负载的部署过程。这些容器镜像经过优化,包含了流行的深度学习框架及其依赖项,用户可以直接使用而无需自行配置复杂的运行环境。
近日,AWS DLC项目发布了针对TensorFlow框架的ARM64架构推理镜像新版本v1.2。该版本基于TensorFlow 2.18.0构建,专门为ARM64处理器架构优化,适用于在Amazon SageMaker等服务上进行模型推理任务。
镜像技术细节
本次发布的TensorFlow推理镜像具有以下主要技术特性:
-
基础环境配置:
- 基于Ubuntu 20.04操作系统
- 使用Python 3.10作为默认Python环境
- 专门针对CPU推理场景优化
-
核心组件版本:
- TensorFlow Serving API 2.18.0
- Protobuf 4.25.6
- Cython 0.29.37
- AWS CLI工具集(boto3 1.36.18、botocore 1.36.18等)
-
系统依赖:
- 包含了必要的系统库如libgcc-9-dev和libstdc++-9-dev
- 预装了开发工具如Emacs编辑器
适用场景
该ARM64架构的TensorFlow推理镜像特别适合以下应用场景:
-
基于ARM处理器的云端推理:随着AWS Graviton等ARM架构处理器的普及,使用专为ARM优化的容器镜像可以获得更好的性价比。
-
SageMaker服务集成:镜像经过专门配置,可以无缝部署到Amazon SageMaker服务中,简化模型部署流程。
-
轻量级推理服务:CPU优化的版本适合对成本敏感且对延迟要求不苛刻的推理场景。
版本管理与使用建议
AWS DLC采用清晰的版本标签策略,用户可以根据需要选择特定版本:
- 长期支持标签(如2.18-cpu)指向该系列的最新稳定版本
- 精确版本标签(如2.18.0-cpu-py310)锁定特定构建版本
- SageMaker专用标签(如ubuntu20.04-sagemaker)包含针对SageMaker的特殊优化
对于生产环境,建议使用精确版本标签以确保环境一致性。开发阶段可以使用长期支持标签方便获取最新更新。
总结
AWS Deep Learning Containers项目持续为机器学习从业者提供高质量的预构建环境。这次发布的TensorFlow ARM64推理镜像v1.2版本,体现了AWS对多样化硬件架构的支持和对推理场景的专门优化。用户可以直接使用这些镜像,省去环境配置的麻烦,专注于模型开发和业务逻辑实现。
随着ARM架构在云计算领域的普及,这类专门优化的容器镜像将帮助用户更好地利用硬件特性,获得更高的性价比。对于使用Amazon SageMaker服务的用户,这些预优化的容器更是简化了从开发到部署的全流程。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00