AWS Deep Learning Containers发布TensorFlow ARM64推理镜像v1.2版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预构建的深度学习容器镜像,旨在简化机器学习工作负载的部署过程。这些容器镜像经过优化,包含了流行的深度学习框架及其依赖项,用户可以直接使用而无需自行配置复杂的运行环境。
近日,AWS DLC项目发布了针对TensorFlow框架的ARM64架构推理镜像新版本v1.2。该版本基于TensorFlow 2.18.0构建,专门为ARM64处理器架构优化,适用于在Amazon SageMaker等服务上进行模型推理任务。
镜像技术细节
本次发布的TensorFlow推理镜像具有以下主要技术特性:
-
基础环境配置:
- 基于Ubuntu 20.04操作系统
- 使用Python 3.10作为默认Python环境
- 专门针对CPU推理场景优化
-
核心组件版本:
- TensorFlow Serving API 2.18.0
- Protobuf 4.25.6
- Cython 0.29.37
- AWS CLI工具集(boto3 1.36.18、botocore 1.36.18等)
-
系统依赖:
- 包含了必要的系统库如libgcc-9-dev和libstdc++-9-dev
- 预装了开发工具如Emacs编辑器
适用场景
该ARM64架构的TensorFlow推理镜像特别适合以下应用场景:
-
基于ARM处理器的云端推理:随着AWS Graviton等ARM架构处理器的普及,使用专为ARM优化的容器镜像可以获得更好的性价比。
-
SageMaker服务集成:镜像经过专门配置,可以无缝部署到Amazon SageMaker服务中,简化模型部署流程。
-
轻量级推理服务:CPU优化的版本适合对成本敏感且对延迟要求不苛刻的推理场景。
版本管理与使用建议
AWS DLC采用清晰的版本标签策略,用户可以根据需要选择特定版本:
- 长期支持标签(如2.18-cpu)指向该系列的最新稳定版本
- 精确版本标签(如2.18.0-cpu-py310)锁定特定构建版本
- SageMaker专用标签(如ubuntu20.04-sagemaker)包含针对SageMaker的特殊优化
对于生产环境,建议使用精确版本标签以确保环境一致性。开发阶段可以使用长期支持标签方便获取最新更新。
总结
AWS Deep Learning Containers项目持续为机器学习从业者提供高质量的预构建环境。这次发布的TensorFlow ARM64推理镜像v1.2版本,体现了AWS对多样化硬件架构的支持和对推理场景的专门优化。用户可以直接使用这些镜像,省去环境配置的麻烦,专注于模型开发和业务逻辑实现。
随着ARM架构在云计算领域的普及,这类专门优化的容器镜像将帮助用户更好地利用硬件特性,获得更高的性价比。对于使用Amazon SageMaker服务的用户,这些预优化的容器更是简化了从开发到部署的全流程。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









