Tea-Tasting 开源项目教程
2025-04-20 00:59:01作者:范垣楠Rhoda
1. 项目介绍
Tea-Tasting 是一个开源的 Python 包,用于 A/B 测试的统计分析。它提供了多种统计测试方法,如 Student's t-test、Z-test、bootstrap 和分位数指标等。Tea-Tasting 拥有可扩展的 API,允许用户定义和使用自己选择的统计测试。此外,它还支持在大数据后端(如 BigQuery、ClickHouse、DuckDB、PostgreSQL、Snowflake、Spark 等)中直接计算统计量,无需将细节数据导入 Python 环境。
2. 项目快速启动
安装
首先,您需要安装 Tea-Tasting。可以通过以下命令进行安装:
pip install tea-tasting
示例代码
下面是一个使用 Tea-Tasting 的基本示例:
import tea_tasting as tt
# 生成用户数据
data = tt.make_users_data(seed=42)
# 创建实验对象,定义各项指标
experiment = tt.Experiment(
sessions_per_user=tt.Mean("sessions"),
orders_per_session=tt.RatioOfMeans("orders", "sessions"),
orders_per_user=tt.Mean("orders"),
revenue_per_user=tt.Mean("revenue"),
)
# 分析数据
result = experiment.analyze(data)
# 打印结果
print(result)
上述代码会输出类似以下格式的结果:
metric control treatment rel_effect_size rel_effect_size_ci pvalue
sessions_per_user 2.00 1.98 -0.66% [-3.7%, 2.5%] 0.674
orders_per_session 0.266 0.289 8.8% [-0.89%, 19%] 0.0762
orders_per_user 0.530 0.573 8.0% [-2.0%, 19%] 0.118
revenue_per_user 5.24 5.73 9.3% [-2.4%, 22%] 0.123
3. 应用案例和最佳实践
- 数据准备:在开始 A/B 测试之前,确保您拥有准确和完整的用户行为数据。
- 指标选择:根据您的业务目标选择合适的指标,例如用户会话次数、订单转化率等。
- 结果分析:使用 Tea-Tasting 提供的统计方法对实验结果进行分析,并评估治疗效果。
- 重复测试:为了确保结果的可重复性,对实验进行多次重复测试。
4. 典型生态项目
Tea-Tasting 可以与多个数据后端和数据处理框架一起使用,以下是一些典型的生态项目:
- Ibis:用于在大数据平台上执行复杂的数据分析任务。
- cuDF:GPU 加速的数据帧库,与 Pandas 兼容。
- Dask:并行计算库,可以扩展 NumPy、Pandas 和 Scikit-Learn。
- Modin:用于分布式数据处理,与 Pandas API 兼容。
通过集成这些项目,您可以进一步扩展 Tea-Tasting 的功能和性能。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
239
2.36 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
998
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
115
Ascend Extension for PyTorch
Python
77
110
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
55