RAGAS项目中Gemini模型集成问题分析与解决方案
2025-05-26 19:52:46作者:明树来
问题背景
在使用RAGAS评估框架时,开发人员尝试集成Google的Gemini 1.5 Pro和Gemini 1.5 Flash模型进行评估时遇到了"LLM generation was not completed"错误。该问题表现为即使设置较小的max_tokens参数,系统仍然报错提示生成未完成。
技术分析
经过深入调查,发现问题根源在于RAGAS框架中的LangchainLLMWrapper对LLM生成完成的判断逻辑与Gemini模型的返回格式不兼容。具体来说:
- 判断机制差异:RAGAS框架默认检查LLM返回结果中的"stop"或"end_turn"标记来判断生成是否完成
- Gemini模型特性:Gemini模型使用大写的"STOP"作为完成标记,这与RAGAS的预期不符
- 版本兼容性:该问题在RAGAS 0.2.2版本中较为明显,早期版本反而没有此问题
解决方案
针对这一问题,社区提供了有效的解决方案:
- 自定义完成判断函数:通过为LangchainLLMWrapper提供自定义的is_finished_parser参数,可以正确解析Gemini模型的返回结果
def custom_is_finished_parser(response: LLMResult):
is_finished_list = []
for g in response.flatten():
resp = g.generations[0][0]
if resp.generation_info is not None:
if resp.generation_info.get("finish_reason") is not None:
is_finished_list.append(
resp.generation_info.get("finish_reason") == "STOP"
)
elif (
isinstance(resp, ChatGeneration)
and t.cast(ChatGeneration, resp).message is not None
):
resp_message: BaseMessage = t.cast(ChatGeneration, resp).message
if resp_message.response_metadata.get("finish_reason") is not None:
is_finished_list.append(
resp_message.response_metadata.get("finish_reason") == "STOP"
)
else:
is_finished_list.append(True)
return all(is_finished_list)
- 应用自定义解析器:在创建LangchainLLMWrapper实例时传入自定义函数
ragas_llm = LangchainLLMWrapper(
llm,
is_finished_parser=custom_is_finished_parser,
)
最佳实践建议
- 版本适配:使用较新版本的RAGAS框架时,注意检查与不同LLM模型的兼容性
- 调试工具:建议使用LangSmith或Arize等调试工具监控LLM的返回结果
- 错误处理:在集成新模型时,应准备完善的错误处理机制
- 社区协作:遇到类似问题时,及时向开源社区反馈,有助于快速获得解决方案
总结
本文分析了RAGAS框架与Gemini模型集成时出现的生成完成判断问题,并提供了经过验证的解决方案。通过自定义完成判断逻辑,开发者可以顺利地在RAGAS评估流程中使用Gemini系列模型。这一案例也提醒我们,在集成不同LLM时,需要特别注意各模型返回结果的格式差异。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110